PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 102 > pp. 31-48

ACCURATE PARAMETER ESTIMATION FOR WAVE EQUATION

By F. K. W. Chan, H.-C. So, S.-C. Chan, R. W. H. Lau, and S. C. F. Chan

Full Article PDF (339 KB)

Abstract:
Waves arise in many physical phenomena which have applications such as describing the voltage along a transmission line and medical imaging modality of elastography. In this paper, estimating the parameters for two forms of lossy wave equations, which correspond to multi-mode and multi-dimensional waves, are tackled. By exploiting the linear prediction property of the noise-free signals, an iterative quadratic maximum likelihood (IQML) approach is devised for accurate parameter estimation. Simulation results show that the estimation performance of the proposed IQML algorithms can attain the optimal benchmark, namely, Cramer-Rao lower bound, at sufficiently high signal-to-noise ratio and/or large data size conditions.

Citation:
F. K. W. Chan, H.-C. So, S.-C. Chan, R. W. H. Lau, and S. C. F. Chan, "Accurate parameter estimation for wave equation," Progress In Electromagnetics Research, Vol. 102, 31-48, 2010.
doi:10.2528/PIER09122301
http://www.jpier.org/PIER/pier.php?paper=09122301

References:
1. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, 1998.

2. Oliphant, T. E., "On parameter estimates for the lossy wave equation," IEEE Transactions on Signal Processing, Vol. 56, No. 1, 49-60, Jan. 2008.
doi:10.1109/TSP.2007.901648

3. So, H. C., M. T. Amin, and F. K. W. Chan, "Accurate and simple estimator for lossy wave equation," IEEE Signal Processing Letters, Vol. 16, No. 9, 798-801, Sep. 2009.
doi:10.1109/LSP.2009.2024797

4. Goodwin, G. C. and R. L. Payne, Dynamic System Identification: Experiment Design and Data Analysis, Academic Press, New York, 1977.

5. Kumaresan, R., L. L. Scharf, and A. K. Shaw, "An algorithm for pole-zero modeling and spectral analysis," IEEE Transactions on Acoustic, Speech and Signal Processing, Vol. 34, 637-640, Jun. 1986.
doi:10.1109/TASSP.1986.1164843

6. Bresler, Y. and A. Macovski, "Exact maximum likelihood parameter estimation of superimposed exponential signals in noise ," IEEE Transactions on Acoustic, Speech and Signal Processing , Vol. 34, 1081-1089, Oct. 1986.

7. Makhoul, J., "Linear prediction: A tutorial review," Proceedings of the IEEE, Vol. 63, No. 4, 561-581, 1975.
doi:10.1109/PROC.1975.9792

8. Chan, Y. T., J. M. M. Lavoie, and J. B. Plant, "A parameter estimation approach to estimation of frequencies of sinusoids," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 29, No. 2, 214-219, Apr. 1981.
doi:10.1109/TASSP.1981.1163543

9. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276

10. Kay, S. M., Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, 1993.

11. Hua, Y., "Estimating two-dimensional frequencies by matrix enhancement and matrix pencil ," IEEE Transactions on Signal Processing, Vol. 40, No. 9, 2267-2280, Sep. 1992.
doi:10.1109/78.157226

12. Liu, J., X. Liu, and X. Ma, "First-order perturbation analysis of singular vectors in singular value decomposition," IEEE Transactions on Signal Processing, Vol. 56, No. 7, 3044-3049, Jul. 2008.
doi:10.1109/TSP.2007.916137


© Copyright 2014 EMW Publishing. All Rights Reserved