PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 101 > pp. 157-171

DESIGN AND EXPERIMENTS OF THE GW HIGH-POWER MICROWAVE FEED HORN

By C. Chang, X. Zhu, G. Liu, J. Fang, R. Xiao, C. Chen, H. Shao, J. Li, H. Huang, Q. Zhang, and Z.-Q. Zhang

Full Article PDF (2,893 KB)

Abstract:
Design and optimization of high-power microwave (HPM) feed horn by combining the aperture field with radiation patterns are presented in the paper. The optimized feed horn in C band satisfies relatively uniform aperture field, power capacity higher than 3 GW, symmetric radiation patterns, low sidelobes, and compact length. Cold tests and HPM experiments were conducted to investigate the radiation patterns and power capacity of the horn. The theoretical radiation patterns are consistent with the cold test and HPM experimental results. The power capacity of the compact HPM horn has been demonstrated by HPM experiments to be higher than 3 GW.

Citation:
C. Chang, X. Zhu, G. Liu, J. Fang, R. Xiao, C. Chen, H. Shao, J. Li, H. Huang, Q. Zhang, and Z.-Q. Zhang, " design and experiments of the gw high - power microwave feed horn ," Progress In Electromagnetics Research, Vol. 101, 157-171, 2010.
doi:10.2528/PIER10010202
http://www.jpier.org/PIER/pier.php?paper=10010202

References:
1. Korovin, S., I. Kurkan, S. Loginov, I. Pegel, S. Polevgin, S. Volko, and A. Zherlitsyn, "Decimeter-band frequency-tunable sources of high-power microwave pulses," Laser Part. Beams, Vol. 21, No. 2, 175-185, 2003.
doi:10.1017/S0263034603212052

2. Neuber, A., M. Butcher, H. Krompholz, L. Hatfield, and M. Kristiansen, "The role of outgassing in surface flashover under vacuum," IEEE Trans. Plasma Sci., Vol. 28, No. 5, 1593-1598, 2000.
doi:10.1109/27.901239

3. Chang, C., G. Liu, C. Tang, C. Chen, and S. Qiu, "The influence of desorption gas to high power microwave window multipactor," Phys. Plasmas, Vol. 15, No. 9, 093508, 2008.
doi:10.1063/1.2977988

4. Chang, C., G. Liu, X. Zhu, H. Chen, and J. Fang, "Improved model for window breakdown at low pressure," Phys. Plasmas, Vol. 16, No. 3, 033505, 2009.
doi:10.1063/1.3088041

5. Chang, C., G. Liu, C. Tang, and L. Yan, "The influence of space charge shielding on dielectric multipactor," Phys. Plasmas, Vol. 15, No. 5, 053506, 2009.
doi:10.1063/1.3142476

6. Neuber, A., L. Laurent, Y. Lau, and H. Krompholz, High Power Microwave Sources and Technologies, R. J. Barker and E. Schamiloglu (eds.) Ed., IEEE, Piscataway, NJ, 2001.

7. Olver, A., P. Clarricoats, A. Kishk, and L. Shafai, Microwave Horns and Feeds, The Institute of Electrical and Electronics Engineers, Inc., New York, 1994.

8. Balanis, C. A., Antenna Theory Analysis and Design, 2nd Ed., John Wiley & Sons, Inc., New York, 2005.

9. Volakis, J., R. Johnson, and H. Jasik, Antenna Engineering Handbook, MC Graw Hill, Inc., New York, 2007.

10. Green, H. E., "The radiation pattern of a conical horn," Journal of Electromagnetic Waves Applications, Vol. 20, No. 9, 1149-1160, 2006.
doi:10.1163/156939306777442999

11. Kishk, A. A. and C.-S. Lim, "Comparative analysis between conical and Gaussian profiled horn antenns," Progress In Electromagnetic Research, Vol. 38, 147-166, 2002.
doi:10.2528/PIER02052406

12. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetic Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806

13. Lee, K. and R. Chu, "Design and analysis of a multimode feed horn for a monopulse feed," IEEE Trans. Antennas Propagat., Vol. 36, No. 2, 171-181, 1988.
doi:10.1109/8.1094

14. Yin, X. H. and S. C. Shi, "A simple design method of multimode horns," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, Part 2, 455-459, 2005.

15. Bhattacharyya, A. K. and G. Goyette, "A novel horn radiator with high aperture efficiency and low cross-polarization and applications in arrays and multibeam reflector antennas," IEEE Trans. Antennas Propagat., Vol. 52, No. 11, 2850-2859, 2004.
doi:10.1109/TAP.2004.835233

16. Kildal, P. S., "Artificially soft and hard surfaces in electromagnetic," IEEE Trans. Antennas Propagat., Vol. 38, No. 10, 1537-1544, 1990.
doi:10.1109/8.59765

17. Gupta, R. C. C. and S. P. Singh, "Development and analysis of a microwave direct contact water-loaded box-horn applicator for therapeutic heating of bio-medium," Progress In Electromagnetics Research, Vol. 62, 217-235, 2006.
doi:10.2528/PIER06031201

17. Gupta, R. C. C. and S. P. Singh, "Development and analysis of a microwave direct contact water-loaded box-horn applicator for therapeutic heating of bio-medium," Progress In Electromagnetics Research, Vol. 62, 217-235, 2006.
doi:10.2528/PIER07060301

18. Gupta, R. C. C. and S. P. Singh, "Analysis of radiation patterns of compound box-horn antenna," Progress In Electromagnetics Research, Vol. 76, 31-44, 2007.
doi:10.2528/PIER09090304

19. Yu, J., M. Yuan, and Q. H. Liu, "A wideband half oval patch antenna for breast imaging," Progress In Electromagnetics Research, Vol. 98, 1-13, 2009.
doi:10.2528/PIER08010103

20. Dehdasht-Heydari, R., H. R. Hassani, and A. R. Mallahzadeh, "A new 2-18 GHz quad-ridged horn antenna," Progress In Electromagnetic Research, Vol. 81, 183-195, 2008.
doi:10.2528/PIER07091602

21. Dehdasht-Heydari, R., H. R. Hassani, and A. R. Mallahzadeh, "Quad ridged horn antenna for UWB applications," Progress In Electromagnetic Research, Vol. 79, 23-38, 2008.
doi:10.2528/PIER08123106

22. Mallahzadeh, A. R. and F. Karshenas, "Modified TEM horn antenna for broadband applications," Progress In Electromagnetic Research, Vol. 90, 105-119, 2009.
doi:10.2528/PIERC09030507

23. Li, H., J. Li, H. Wang, T.-M. Li, and Y.-H. Zhou, "Design of the high efficiency circular horn feed for high-power microwave system," Progress In Electromagnetic Research C, Vol. 8, 1-12, 2009.
doi:10.2528/PIERB08010705

24. Green, H., "The phase centre of a pure mode, smooth wall, conical horn," Progress In Electromagnetics Research B, Vol. 4, 285-298, 2008.
doi:10.2528/PIERL08102403

25. Fazaelifar, M. and M. Fatorehchy, "Design, fabrication and test of parabolic cylinder reflector and horn for increasing the gain of vlasov antenna," Progress In Electromagnetics Research Letters, Vol. 4, 191-203, 2008.

26. ST Microwave Studio, , Germany, http://www.cst.com.
doi:10.1063/1.3153947

27. Chang, C., H. Huang, G. Liu, C. Chen, Q. Hou, J. Fang, X. Zhu, and Y. Zhang, "The effect of grooved surface on dielectric multipactor," J. Appl. Phys., Vol. 105, No. 12, 123305, 2009.
doi:10.1063/1.3200900

28. Chang, C., G. Liu, H. Huang, C. Chen, and J. Fang, "Suppressing high-power microwave dielectric multipactor by the sawtooth surface," Phys. Plasmas, Vol. 16, No. 8, 083501, 2009.
doi:10.1063/1.3086635

29. Xiao, R. Z., C. H. Chen, X. W. Zhang, and J. Sun, "Efficiency enhancement of a high power microwave generator based on a relativistic backward wave oscillator with a resonant reflector," J. Appl. Phys., Vol. 105, No. 5, 053306, 2009.


© Copyright 2014 EMW Publishing. All Rights Reserved