PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 103 > pp. 201-216

DOA ESTIMATION WITH SUB-ARRAY DIVIDED TECHNIQUE AND INTERPORLATED ESPRIT ALGORITHM ON A CYLINDRICAL CONFORMAL ARRAY ANTENNA

By P. Yang, F. Yang, and Z.-P. Nie

Full Article PDF (570 KB)

Abstract:
A novel DOA finding method for conformal array applications is proposed. By using sub-array divided and interpolation technique, ESPRIT-based algorithms can be used on conformal arrays for 1-D and 2-D DOA estimation. In this paper, the circular array mounted on a metallic cylindrical platform is divided to several sub-arrays, and each sub-array is transformed to virtual uniform linear array or virtual uniform planar array through interpolation technique. 1-D and 2-D direction of arrivals can be estimated accurately and quickly by using LS-ESPRIT and 2-D DFT-ESPRIT algorithms, respectively. This method can be applied not only to cylindrical conformal array but also to any other arbitrary curved conformal arrays. Validity of this method is proved by simulation results.

Citation:
P. Yang, F. Yang, and Z.-P. Nie, "DOA estimation with sub-array divided technique and interporlated ESPRIT algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904
http://www.jpier.org/PIER/pier.php?paper=10011904

References:
1. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, IEEE Press Series on Electromagnetic Wave Theory, 2006.
doi:10.1002/047178012X

2. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, New York, 2005.

3. Tuncer, E. and B. Friedlander, "Classical and Modern Direction of Arrival Estimation," Elsevier, Burlington, MA, 2009.

4. Schmit, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

5. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acoust., Speech, Signal Process., Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276

6. Peng, Y., Y. Feng, and Z. Nie, DOA estimation using MUSIC algorithm on a cylindrical conformal antenna array, IEEE Antennas and Propagation Symposium, 5299-5302, 2007.

7. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2D angle estimation with uniform circular arrays," IEEE Trans. Signal Processing, Vol. 42, No. 9, 2395-2407, 1994.
doi:10.1109/78.317861

8. Friedlander, B., Direction finding with an interpolated array, Proc., ICASSP, 2951-2954, Albuquerque, NM, Apr. 1990.

9. Weiss, A. J. and M. Gavish, "Direction finding using ESPRIT with interpolated arrays," IEEE Trans. Signal Processing, Vol. 39, No. 6, 1473-1478, 1991.
doi:10.1109/78.136564

10. Friedlander, B. and A. J. Weiss, "Direction finding for wideband signals using an interpolated array," IEEE Trans. Signal Processing, Vol. 41, No. 4, 1618-1634, 1993.
doi:10.1109/78.212735

11. Yuen, N. and B. Friedlander, "Asymptotic performance analysis of esprit, higher order esprit, and virtual ESPRIT algorithms," IEEE Trans. Signal Processing, Vol. 44, No. 10, 2537-2550, Oct. 1996.
doi:10.1109/78.539037

12. Hwang, S. and T. K. Sarkar, Direction of arrival (DOA) estimation using a transformation matrix through singular value decomposition, IEEE Antennas and Propagation Symposium, 130-133, 2005.

13. Rubsamen, M. and A. B. Gershman, Root-MUSIC based direction of arrival estimation methods for arbitrary non-uniform arrays, Proc., ICASSP, 2317-2320, 2008.

14. Zoltowski, M. D., M. Haardt, and C. P. Mathews, "Closed form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT ," IEEE Trans. Signal Processing, Vol. 44, No. 2, 316-328, Feb. 1996.
doi:10.1109/78.485927


© Copyright 2014 EMW Publishing. All Rights Reserved