Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 102 > pp. 267-286


By J. Zhang, M. Y. Koledintseva, G. Antonini, J. L. Drewniak, A. Orlandi, and K. N. Rozanov

Full Article PDF (718 KB)

An effective approach to characterize frequency-dispersive sheet materials over a wide RF and microwave frequency range based on planar transmission line geometries and a genetic algorithm is proposed. S-parameters of a planar transmission line structure with a sheet material under test as a substrate of this line are measured using a vector network analyzer (VNA). The measured S-parameters are then converted to ABCD matrix parameters. With the assumption of TEM/quasi-TEM wave propagation on the measured line, as well as reciprocity and symmetry of the network, the complex propagation constant can be found, and the corresponding phase constant and attenuation constant can be retrieved. Attenuation constant includes both dielectric loss and conductor loss terms. At the same time, phase term, dielectric loss and conductor loss can be calculated for a known transmission line geometry using corresponding closed-form analytical or empirical formulas. These formulas are used to construct the objective functions for approximating phase constants, conductor loss and dielectric loss in an optimization procedure based on a genetic algorithm (GA). The frequency-dependent dielectric properties of the substrate material under test are represented as one or a few terms following the Debye dispersion law. The parameters of the Debye dispersion law are extracted using the GA by minimizing the discrepancies between the measured and the corresponding approximated loss and phase terms. The extracted data is verified by substituting these data in full-wave numerical modeling of structures containing these materials and comparing the simulated results with experimental.

J. Zhang, M. Y. Koledintseva, G. Antonini, J. L. Drewniak, A. Orlandi, and K. N. Rozanov, "Planar transmission line method for characterization of printed circuit board dielectrics," Progress In Electromagnetics Research, Vol. 102, 267-286, 2010.

1. Nikellis, K., N. K. Uzunoglu, Y. Koutsoyannopoulos, and S. Bantas, "Full-wave modeling of stripline structures in multilayer dielectrics," Progress In Electromagnetics Research, Vol. 57, 253-264, 2006.

2. Wu, B. and L. Tsang, "Full-wave modeling of multiple vias using differential signaling and shared antipad in multilayered high speed vertical interconnects," Progress In Electromagnetics Research, Vol. 97, 129-139, 2009.

3. Bernardi, P., R. Cicchetti, G. Pelosi, A. Reatti, S. Selleri, and M. Tatini, "An equivalent circuit for EMI prediction in printed circuit boards featuring a straight-to-bent microstrip line coupling," Progress In Electromagnetics Research B, Vol. 5, 107-118, 2008.

4. Saito, S. and K. Kurokawa, "A precision resonance method for measuring dielectric properties of low-loss solid materials in the microwave region," Proceedings of the IRE, Vol. 44, No. 1, 35-42, 1956.

5. Du, S., "A new method for measuring dielectric constant using the resonant frequency of a patch antenna," IEEE Trans. Microw. Theory Tech., Vol. 34, No. 9, 923-931, Sep. 1986.

6. Abdulnour, J., C. Akyel, and K. Wu, "A generic approach for permittivity measurement of dielectric materials using a discontinuity in a rectangular waveguide or a microstrip line," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 5, 1060-1066, 1995.

7. Holzman, E. L., "Wideband measurement of the dielectric constant of an FR4 substrate using a parallel-coupled microstrip resonator," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 7, 3127-3130, 2006.

8. Huang, J., K. Wu, and C. Akyel, "Characterization of highly dispersive materials using composite coaxial cells, electromagnetic analysis and wideband measurement," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 5, 770-777, 1996.

9. Baker-Jarvis, J., M. D. Janezic, B. F. Riddle, R. T. Johnk, P. Kabos, C. L. Holloway, R. G. Geyer, and C. A. Grosvenor, "Measuring the permittivity and permeability of lossy materials: Solid, metals, building materials, and negative-index materia,", NIST Technical Note 1536, Boulder, CO, USA, Dec. 2004.

10. Afsar, M. N., J. B. Birch, and R. N. Clarke, "The measurement of the properties of materials," Proc. IEEE, Vol. 74, No. 1, 183-199, 1986.

11. Klein, K. and J. C. Santamarina, "Methods for broad-band dielectric permittivity measurements (Soil-Water Mixtures, 5 Hz to 1.3 GHz)," Geotechnical Testing Journal, Vol. 20, No. 2, Jun. 1997.

12. Deutsch, A., T. Winkel, G. V. Kopcsay, C. W. Surovic, B. J. Rubin, G. A. Katopis, B. J. Chamberlin, and R. S. Krabbenhoft, "Extraction of εr(f) and tan δ(f) for printed circuit board insulatiors up to 30 GHz using the short-pulse propagation technique," IEEE Trans. Adv. Packag., Vol. 28, No. 1, 4-12, Feb. 2005.

13. Zhang, J., M. Y. Koledintseva, J. L. Drewniak, D. J. Pommerenke, R. E. DuBroff, Z. Yang, W. Chen, K. N. Rozanov, G. Antonini, and A. Orlandi, "Reconstruction of dispersive dielectric properties for PCB substrates using a genetic algorithm," IEEE Trans. Electromagn. Compat., Vol. 50, No. 3, 704-714, Aug. 2008.

14. Zhang, J., M. Y. Koledintseva, D. P. Pommerenke, J. L. Drewniak, K. N. Rozanov, G. Antonini, and A. Orlandi, "Extraction of dispersive material parameters using vector network analysers and genetic algorithms," Proc. IEEE Instrumentation and Measurement Technology Conference, 462-467, Sorrento, Italy, Apr. 2006.

15. Hilfer, R., "H-function representation for stretched exponential relaxation and non-Debye susceptibilities in glassy systems," Phys. Rev. E, Vol. 65, 061510, 2002.

16. Jonscher, A. K., Dielectric Relaxation in Solids, Chelsea Dielectric Press, 1983.

17. Djordjevic, A. R., R. M. Biljic, V. D. Likar-Smiljanic, and T. K. Sarkar, "Wideband frequency-domain characterization of FR-4 and time-domain causality," IEEE Trans. on Electromag. Compat., Vol. 43, No. 4, 662-667, Nov. 2001.

18. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, "Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling," Proc. IEEE Symp. Electromag. Compat., Vol. 1, 309-314, 2004.

19. Koledintseva, M. Y., K. N. Rozanov, A. Orlandi, and J. L. Drewniak, "Extraction of the Lorentzian and Debye parameters of dielectric and magnetic dispersive materials for FDTD modeling," J. Electr. Eng., IEE Slovak, Vol. 53, No. 9, 97-100, 2002.

20. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, 256-265, Pergamon Press, 1960.

21. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, 1-93, Wiley, 1999.

22. Haupt, R. L. and D. H. Werner, Genetic Algorithms in Electromagnetics, IEEE Press, Wiley, 2007.

23. Mittal, G. and D. Singh, "Critical analysis of microwave specular scattering response on roughness parameter and moisture content for bare periodic rough surfaces and its retrieval," Progress In Electromagnetics Research, Vol. 100, 129-152, 2010.

24. Liu, B., L. Beghou, L. Pichon, and F. Costa, "Adaptive genetic algorithm based source identification with near-field scanning method," Progress In Electromagnetics Research B, Vol. 9, 215-230, 2008.

25. Chen, H. T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.

26. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.

27. Xu, Z., H. Li, Q.-Z. Liu, and J.-Y. Li, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 79, 75-90, 2008.

28. Meng, Z., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.

29. Zhang, Z., T. Hagfors, E. Nielsen, G. Picardi, A. Mesdea, and J. J. Plaut, "Dielectric properties of the Martian south polar layered deposits: MARSIS data inversion using Bayesian inference and genetic algorithm," J. Geophys. Res., Vol. 113, E05004, May 2008.

30. Diaz-Morcillo, A., J. Monzo-Cabrera, M. E. Requena-Perez, and A. Lozano-Guerrero, "Application of genetic algorithms in the determination of dielectric properties of materials at microwave frequencies," Lecture Notes in Computer Science (LNCS), Vol. 4528, 608-617, Nature Inspired Problem-Solving Methods in Knowledge Engineering, Springer, Berlin, 2007.

31. Oswald, B., D. Erni, H. R. Benedickter, W. Bachtold, and H. Fluhler, "Dielectric properties of natural materials," IEEE Int. Symp. Antennas and Propagation Society (APS), Vol. 4, 2002-2005, Jun. 21-26, 1998.

32. Koledintseva, M. Y., J. L. Drewniak, D. J. Pommerenke, K. N. Rozanov, G. Antonini, and A. Orlandi, "Wide-band Lorentzian media in the FDTD algorithm," IEEE Trans. on Electromag. Compat., Vol. 47, No. 2, 392-398, May 2005.

33. Koul, A., P. K. R. Anmula, M. Y. Koledintseva, J. L. Drewniak, and S. Hinaga, "Improved technique for extracting parameters of low-loss dielectrics on printed circuit boards," Proc. IEEE Symp. Electromag. Compat., 191-196, Austin, TX, Aug. 17-21, 2009.

34. Braunisch, H., X. Gu, A. Camacho-Bragado, and L. Tsang, "Off-chip rough-metal-surface propagation loss modeling and correlation with measurements," IEEE Electronic Components and Technology Conference, 785-791, 2007.

35. Koledintseva, M. Y., A. Koul, P. K. R. Anmula, J. L. Drewniak, S. Hinaga, E. Montgomery, and K. N. Rozanov, "Separating dielectric and conductor loss for rough striplines in printed circuit boards," Progress In Electromagnetics Research Symposium Abstracts, 213, Moscow, Russia, Aug. 18-21, 2009.

36. Janezic, M. D. and J. A. Jargon, "Complex permittivity determination from propagation constant measurements," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 2, 76-78, Feb. 1999.

37. Baker-Jarvis, J., E. Vanzura, and W. Kissick, "Improved technique for determining complex permittivity with the transmsion/reflection method," IEEE Trans. Microw. Theory Techn., Vol. 38, 1096-1103, Aug. 1990.

38. Hoffman, R. K., Handbook of Microwave Integrated Circuits, Artech House, 1987.

39. Pozar, M., Microwave Engineering, 2nd Ed., Wiley, 1998.

40. Schneider, M. V., "Microstrip lines for microwave integrated circuits," The Bell System Technical Journal, Vol. 48, No. 5-6, 1421-1444, 1969.

41. Gardiol, F. and K. Chang, Microstrip Circuits, 33-58, Wiley, 1994.

42. Wheeler, H. A., "Transmission line properties of a strip on a dielectric sheet on a plane," IEEE Trans. Microw. Theory Tech., Vol. 25, No. 8, 631-647, 1977.

43. Wadell, B. C., Transmission Line Design Handbook, 129-131, Artech House, 1991.

44. Hockanson, D. M., J. L. Drewniak, T. H. Hubing, and T. P. van Doren, "FDTD modeling of thin wires simulating common-mode radiation from structures with attached cables," Proc. IEEE Symp. Electromag. Compat., 168-173, 1Atlanta, GA, USA, Aug. 1995.

45. Wang, C., J. L. Drewniak, and M. Li, "FDTD modeling of skin effect," Proc. IEEE Symp. Electromag. Compat., 246-249, Beijing, China, May 2002.

46. Mongia, R., I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, 83-90, Artech House, 1999.

47. Zhang, J., J. L. Drewniak, D. P. Pommerenke, R. E. DuBroff, Z. Yang, W. Cheng, J. Fisher, and S. Camerlo, "Signal link-path characterization up to 20 GHz based on a stripline structure," Proc. of the 2006 IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 356-361, Portland, OR, Aug. 2006.

48. Clemens, M., S. Drobny, and T. Weiland, "Time integration of slowly-varying electromagnetic field problems using the finite integration technique," Scientific Computing in Electrical Engineering, U. van Reinen, M. Guenther, and Hecht (eds.), 63-70, Springer Verlag, 2001.

© Copyright 2014 EMW Publishing. All Rights Reserved