PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 104 > pp. 69-83

TRANSFER FUNCTION AND COMPACT DISTRIBUTED RLC MODELS OF CARBON NANOTUBE BUNDLE INTERCONNETS AND THEIR APPLICATIONS

By J.-P. Cui and W.-Y. Yin

Full Article PDF (941 KB)

Abstract:
According to the derived transfer function using different orders of approximation, stability and signal transmission analysis of a driven metallic single-walled carbon nanotube (SWCNT) bundle interconnect are performed. It is shown that as the length of SWCNT bundle interconnect increases, the poles will be closer to the imaginary axis, which causes the transmitted signal response tends to be more damping. Using the fourth-order approximation of the transfer function, the transmitted pulse waveform along the SWCNT bundle interconnect is captured accurately, with signal overshoot and time delay examined. Further, a complete physical model for the transient response of carbon nanotube bundle interconnect is derived, which can also accurately predict the transient response of carbon nanotube bundle interconnect including time delay and crosstalk.

Citation:
J.-P. Cui and W.-Y. Yin, " transfer function and compact distributed rlc models of carbon nanotube bundle interconnets and their applications ," Progress In Electromagnetics Research, Vol. 104, 69-83, 2010.
doi:10.2528/PIER10031011
http://www.jpier.org/PIER/pier.php?paper=10031011

References:
1. Li, H., C. Xu, N. Srivastava, and K. Banerjee, "Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects," IEEE Trans. Electron. Device, Vol. 56, No. 9, 1799-1821, Sep. 2009.
doi:10.1109/TED.2009.2026524

2. Burke, P. J., "An RF circuit model for carbon nanotubes," IEEE Trans. Nanotech., 55-58, Mar. 2003.
doi:10.1109/TNANO.2003.808503

3. Naeemi, A. and J. D. Meindl, "Compact physical model for multiwall carbon nanotube interconnect," IEEE Trans. Electron. Device Lett., Vol. 27, No. 5, 338-340, May 2006.
doi:10.1109/LED.2006.873765

4. Li, H., W. Y. Yin, K. Banerjee, and J. F. Mao, "Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects ," IEEE Trans. Electron. Device, Vol. 55, No. 6, 1328-1337, Jun. 2008.
doi:10.1109/TED.2008.922855

5. Maffucci, A., G. Miano, and F. Villone, "A new circuit model for carbon nanotube interconnects with diameter-dependent parameters," IEEE Trans. Nanotech., Vol. 8, No. 3, 345-354, May 2009.
doi:10.1109/TNANO.2008.2010545

6. Nieuwoudt, A. and Y. Massoud, "Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques," IEEE Trans. Nanotech., Vol. 5, No. 6, 758-765, Nov. 2006.
doi:10.1109/TNANO.2006.883480

7. Haruehanroengra, S. and W. Wang, "Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications," IEEE Electron. Device Lett., Vol. 28, No. 8, 756-759, Aug. 2007.
doi:10.1109/LED.2007.901584

8. Wang, W., S. Haruehantoengra, L. Shang, and M. Liu, "Inductance of mixed carbon nanotube bundles," Micro. & Nano. Lett., Vol. 2, No. 2, 35-39, Jun. 2007.
doi:10.1049/mnl:20070027

9. Rossi, D., J. M. Cazeaux, C. Metra, and F. Lombardi, "Modeling crosstalk effects in CNT bus architectures," IEEE Trans. Nanotech., Vol. 6, No. 2, 133-145, Mar. 2007.
doi:10.1109/TNANO.2007.891814

10. Pu, S. N., W. Y. Yin, J. F. Mao, and Q. H. Liu, "Crosstalk prediction of single- and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects," IEEE Trans. Electron. Devices, Vol. 55, No. 4, 560-568, Apr. 2009.
doi:10.1109/TED.2009.2014429

11. Naeemi, A., R. Sarvari, and J. D. Meindl, "Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI) ," IEEE Electron. Device Lett., Vol. 26, No. 2, 84-86, Feb. 2005.
doi:10.1109/LED.2004.841440

12. Naeemi, A. and J. D. Meindl, "Design and performance modeling for single-walled carbon nanotubes as local, semi-global, and global interconnects in gigascale integrated systems," IEEE Trans. Electron. Devices, Vol. 54, No. 1, 26-37, 2007.
doi:10.1109/TED.2006.887210

13. Srivastava, N., H. Li, F. Kreupl, and K. Banerjee, "On the applicability of single-walled carbon nanotubes as VLSI interconnects," IEEE Trans. Nanotech., Vol. 8, No. 4, 542-559, Jul. 2009.
doi:10.1109/TNANO.2009.2013945

14. Fathi, D. and B. Forouzandeh, "A novel approach for stability analysis in carbon nanotube interconnects," IEEE Electron. Device Lett., Vol. 30, No. 5, 475-477, May 2009.
doi:10.1109/LED.2009.2017388

15. Chen, W. C., W. Y. Yin, J. Lei, and Q. H. Liu, "Electrothermal characterization of single-walled carbon nanotube (SWCNT) interconnect arrays," IEEE Trans. Nanotech., Vol. 8, No. 6, 718-728, 2009.
doi:10.1109/TNANO.2009.2019725

16. Patil, N., J. Deng, A. Lin, H. S. P. Wong, and S. Mitra, "Design methods for misaligned and mispositioned carbon-nanotube immune circuits," IEEE Trans. Computer-aided Design of Integrated Circuits and Systems, Vol. 27, No. 10, 1725-1746, Oct. 2008.
doi:10.1109/TCAD.2008.2003278

17. Close, G. F. and H. S. P. Wong, "Assembly and electrical characterization of multiwall carbon nanotube interconnects," IEEE Trans. Nanotech., Vol. 7, No. 5, 596-600, Sep. 2008.
doi:10.1109/TNANO.2008.927373

18. Patil, N., A. Lin, E. R. Myers, K. Ryu, A. Badmaev, C. W. Zhou, and H. S. P. Wong, "Wafer-scale growth and transfer of aligned single-walled carbon nanotubes," IEEE Trans. Nanotech., Vol. 8, No. 4, 498-504, Jul. 200.
doi:10.1109/TNANO.2009.2016562

19. Lin, A., N. Patil, H. Wei, S. Mitra, and H. S. P. Wong, "ACCNT-a metallic-CNT-tolerant design methodology for carbon-nanotube VLSI: concepts and experimental demonstration," IEEE Trans. Electron. Device, Vol. 56, No. 12, 2969-2978, Dec. 2009.
doi:10.1109/TED.2009.2033168

20. Banerjee, K. and A. Mehrotra, "Analysis of on-chip inductance effects for distributed RLC interconnects," IEEE Trans. Computeraided Designs of Integrated Circuits and Systems, Vol. 21, No. 5, 904-915, Aug. 2002.
doi:10.1109/TCAD.2002.800459

21. Davis, J. A. and J. D. Meindl, "Compact distributed RLC interconnect models --- Part I: Single line transient, time delay, and overshoot expressions," IEEE Trans. Electron. Device, Vol. 47, No. 11, 2068-2077, Nov. 2000.
doi:10.1109/16.877168

22. Davis, J. A. and J. D. Meindl, "Compact distributed RLC interconnect models --- Part II: Coupled line transient expressions and peak crosstalk in multilevel networks," IEEE Trans. Electron. Device, Vol. 47, No. 11, 2078-2087, Nov. 2000.
doi:10.1109/16.877169

23. Venkatesan, R., J. A. Davis, and J. D. Meindl, "Compact distributed RLC interconnect models --- Part III: Transients in single and coupled lines with capacitive load termination," IEEE Trans. Electron. Device, Vol. 50, No. 4, 1081-1093, Apr. 200.
doi:10.1109/TED.2003.812507

24. Venkatesan, R., J. A. Davis, and J. D. Meindl, "Compact distributed RLC interconnect models --- Part IV: Unified models for time delay, crosstalk, and repeater insertion," IEEE Trans. Electron. Device, Vol. 50, No. 4, 1094-1102, Apr. 2003.
doi:10.1109/TED.2003.812509

25. Fathi, D. and B. Forouzandeh, "Time domain analysis of carbon nanotube interconnects based on distributed RLC model," Nano., Vol. 4, No. 1, 13-21, 2009.
doi:10.1142/S1793292009001484

26. Fathi, D., Forouzandeh, S. Mohajerzadeh, and R. Sarvari, "Accurate analysis of carbon nanotube interconnects using transmission line model," Micro & Nano Lett., Vol. 4, No. 2, 116-121, 2009.
doi:10.1049/mnl.2009.0045

27. Davis, J. A., A hierarchy of interconnect limits and opportunities for gigascale integration (GSI) , Ph.D. dissertation, Univ. Georgia Institute of Technology, Mar. 1999.

28. Sarto, M. S., A. Tamburrano, and M. D'Amore, "New electron-waveguide-based modeling for carbon nanotube interconnects," IEEE Trans. Nanotechnology, Vol. 8, No. 2, 214-225, 2008.
doi:10.1109/TNANO.2008.2010253

29. Raguraman, V., Multilevel interconnect architectures for gigascale integration (GSI), Ph.D. dissertation, Georgia Institute of Technology, Feb. 2003.

30. Khalaj-Amirhosseini, M., "Closed form solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.
doi:10.2528/PIERB07111502

31. Chiu, C.-N. and I.-T. Chiang, "A fast approach for simulating long-time response of high-speed dispersive and lossy interconnects terminated with nonlinear loads," Progress In Electromagnetics Research, Vol. 91, 153-171, 2009.
doi:10.2528/PIER09021502

32. Wang, Y. J., W. J. Koh, C. K. Lee, and K. Y. See, "Electromagnetic coupling analysis of transient signal through slots or apertures perforated in a shielding metallic enclosure using FDTD methodology," Progress In Electromagnetics Research, Vol. 36, 247-264, 2002.
doi:10.2528/PIER02021701


© Copyright 2014 EMW Publishing. All Rights Reserved