Vol. 107
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-08-13
Resonant Modes and Resonant Transmission in Multi-Layer Structures
By
Progress In Electromagnetics Research, Vol. 107, 293-314, 2010
Abstract
Resonant modes of multi-layer structures which contain the regions of negative epsilon material (such as a metal in the visible range) are analyzed. Existence of two separate classes of resonant modes is demonstrated. One is related to the excitation of the surface mode at the interface of the regions with opposite signs of the dielectric constant and involve energy transport by evanescent modes throughout the whole structure. The second class involves propagating modes (which form the resonant standing wave) in some regions and the evanescent waves in other layers with ε<0. It is shown that the resonant transmission is related to the existence of quasi-stationary leaky modes having a finite life-time and characterized by large wave amplitude in the trapping region. It is shown that both types of resonances can coexist in multi-layer structures. It is also shown that the interaction of the symmetric and anti-symmetric surface eigen-modes widens the resonant transmission region.
Citation
Andrei I. Smolyakov, E. A. Fourkal, Sergei I. Krasheninnikov, and Natalia Sternberg, "Resonant Modes and Resonant Transmission in Multi-Layer Structures," Progress In Electromagnetics Research, Vol. 107, 293-314, 2010.
doi:10.2528/PIER10032706
References

1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 8, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Feng, S. M., J. M. Elson, and P. L. Overfelt, "Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes," Optics Express, Vol. 13, No. 11, 4113-4124, 2005.
doi:10.1364/OPEX.13.004113

4. Feng, T. H., Y. H. Li, J. Y. Guo, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Highly localized mode in a pair structure made of epsilon-negative and mu-negative metamaterials," Journal of Applied Physics, Vol. 104, No. 1, 2008.

5. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553

6. Alu, A. and N. Engheta, "Evanescent growth and tunneling through stacks of frequency-selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 417-420, 2005.
doi:10.1109/LAWP.2005.859381

7. Brodin, G., A. Marklund, L. Stenflo, and R. K. Shukla, "Anomalous reflection and excitation of surface waves in metamaterials," Physics Letters A, Vol. 367, No. 3, 233-236, 2007.
doi:10.1016/j.physleta.2007.03.021

8. Bliokh, K. Y. and Y. P. Bliokh, "What are the left-handed media and what is interesting about them?," Physics-Uspekhi, Vol. 47, No. 4, 393-400, 2004.
doi:10.1070/PU2004v047n04ABEH001728

9. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.
doi:10.1126/science.1108759

10. Dragila, R., B. Lutherdavies, and S. Vukovic, "High transparency of classically opaque metallic-films," Physical Review Letters, Vol. 55, No. 10, 1117-1120, 1985.
doi:10.1103/PhysRevLett.55.1117

11. Hayashi, S., H. Kurokawa, and H. Oga, "Observation of resonant photon tunneling in photonic double barrier structures," Optical Review, Vol. 6, No. 3, 204-210, 1999.
doi:10.1007/s10043-999-0204-3

12. Wegener, M., G. Dolling, and S. Linden, "Plasmonics: Backward waves moving forward," Nature Materials, Vol. 6, No. 7, 475-476, 2007.
doi:10.1038/nmat1926

13. Zhou, L., W. J. Wen, C. T. Chan, and P. Sheng, "Electromagneticwave tunneling through negative-permittivity media with high magnetic fields," Physical Review Letters, Vol. 94, No. 24, 2005.

14. Hooper, I. R., T. W. Preist, and J. R. Sambles, "Making tunnel barriers (including metals) transparent," Physical Review Letters, Vol. 97, No. 5, 2006.
doi:10.1103/PhysRevLett.97.053902

15. Tomita, S., T. Yokoyama, H. Yanagi, B. Wood, J. B. Pendry, M. Fujii, and S. Hayashi, "Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials," Optics Express, Vol. 16, No. 13, 9942-9950, 2008.
doi:10.1364/OE.16.009942

16. Lin, L., R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Physical Review B, Vol. 74, No. 15, 2006.
doi:10.1103/PhysRevB.74.155407

17. Mattiucci, N., G. D'Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia, "Transmission function properties for multilayered structures: Application to super-resolution," Optics Express, Vol. 17, No. 20, 17517-17529, 2009.
doi:10.1364/OE.17.017517

18. Prosvirnin, S. L., S. A. Tretyakov, T. D. Vasilyeva, A. Fourrier-Lamer, and S. Zouhdi, "Analysis of reflection and transmission of electromagnetic waves in complex layered arrays," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 6, 807-826, 2000.
doi:10.1163/156939300X01562

19. Suyama, T., Y. Okino, and T. Matsuda, "Surface plasmon resonance absorption in a multilayered thin-film grating," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1773-1783, 2009.
doi:10.1163/156939309789566914

20. Lu, J., B. I. Wu, J. A. Kong, and M. Chen, "Guided modes with a linearly varying transverse field inside a left-handed dielectric slab," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 689-697, 2006.
doi:10.1163/156939306776137728

21. Ramazashvili, R. R., "Total transmission of electromagneticwaves through slabs of plasmas and plasma-like media upon the excitation of surface-waves," Jetp Letters, Vol. 43, No. 5, 298-301, 1986.

22. Fourkal, E., I. Velchev, C. M. Ma, and A. Smolyakov, "Evanescent wave interference and the total transparency of a warm highdensity plasma slab," Physics of Plasmas, Vol. 13, No. 9, 2006.
doi:10.1063/1.2354574

23. Fourkal, E., I. Velchev, C. M. Ma, and A. Smolyakov, "Resonant transparency of materials with negative permittivity," Physics Letters A, Vol. 361, No. 4-5, 277-282, 2007.
doi:10.1016/j.physleta.2006.09.091

24. Chiao, R. Y., P. G. Kwiat, and A. M. Steinberg, "Analogies between electron and photon tunneling --- A proposed experiment to measure photon tunneling times," Physica B, Vol. 175, No. 1-3, 257-262, 1991.
doi:10.1016/0921-4526(91)90724-S

25. Winful, H. G., "Tunneling time, the hartman effect, and superluminality: A proposed resolution of an old paradox," Physics Reports-Review Section of Physics Letters, Vol. 436, No. 1-2, 1-69, 2006.

26. Chang, L. L., L. Esaki, and R. Tsu, "Resonant tunneling in semiconductor double barriers," Applied Physics Letters, Vol. 24, No. 12, 593-595, 1974.
doi:10.1063/1.1655067

27. Chang, L. L. and L. Esaki, "Semiconductor quantum heterostructures," Physics Today, Vol. 45, No. 10, 36-43, 1992.
doi:10.1063/1.881342

28. Gradov, O. M. and L. Stenflo, "Linear-theory of a cold bounded plasma," Physics Reports-Review Section of Physics Letters, Vol. 94, No. 3, 111-137, 1983.

29. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Verlag, Berlin, 1988.

30. Ramakrishna, S. A., "Physics of negative refractive index materials," Reports on Progress in Physics, Vol. 68, No. 2, 449-521, 2005.
doi:10.1088/0034-4885/68/2/R06

31. Leontovich, M. A. and L. I. Mandelstam, "To the theory of schrodinger equation," Ztschr. Phys., Vol. 47, 131-136, 1928.
doi:10.1007/BF01391061

32. Pollard, R. J., A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, "Optical nonlocalities and additional waves in epsilon-near-zero metamaterials," Physical Review Letters, Vol. 102, No. 12, 2009.
doi:10.1103/PhysRevLett.102.127405

33. Daninthe, H., S. Foteinopoulou, and C. M. Soukoulis, "Omnire-flectance and enhanced resonant tunneling from multilayers containing left-handed materials," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 4, No. 3, 123-131, 2006.
doi:10.1016/j.photonics.2006.01.001

34. Darmanyan, S. A. and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Physical Review B, Vol. 67, No. 3, 035424, 2003.
doi:10.1103/PhysRevB.67.035424

35. Winful, H. G., "Apparent superluminality and the generalized hartman effect in double-barrier tunneling (Vol. 72, P. 046608, 2005)," Physical Review E, Vol. 73, No. 3, 2006.
doi:10.1103/PhysRevE.73.039901