PIER | |
Progress In Electromagnetics Research | ISSN: 1070-4698, E-ISSN: 1559-8985 |
Home > Vol. 105 > pp. 15-30
MLFMA-FFT PARALLEL ALGORITHM FOR THE SOLUTION OF LARGE-SCALE PROBLEMS IN ELECTROMAGNETICS (Invited Paper)By J. M. Taboada, M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. RodriguezAbstract: An efficient hybrid MPI/OpenMP parallel implementation of an innovative approach that combines the Fast Fourier Transform (FFT) and the Multilevel Fast Multipole Algorithm (MLFMA) has been successfully used to solve an electromagnetic problem involving 620 millions of unknowns. The MLFMA-FFT method can deal with extremely large problems due to its high scalability and its reduced computational complexity. The former is provided by the use of the FFT in distributed calculations and the latter by the application of the MLFMA in shared computation.
Citation:
References:
2. Coifman, R., V. Rokhlin, and S. Wanzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propagat. Mag., Vol. 35, No. 3, 7-12, Jun. 1993. 3. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microw. Opt. Tech. Lett., Vol. 10, 14-19, Sep. 1995. 4. Song, J. M., C. C. Lu, W. C. Chew, and S. W. Lee, "Fast Illinois solver code (FISC)," IEEE Antennas Propag. Mag., Vol. 40, No. 3, 27-34, Jun. 1998. 5. Velamparambil, S., J. M. Song, W. C. Chew, and K. Gallivan, "Scaleme: A portable scaleable multipole engine for electromagnetic and acoustic integral equation solvers," IEEE Antennas Propag. Soc. Int. Symp., Vol. 3, 1774-1777, Jun. 1998.
6. Velamparambil, S., J. E. Schutt-Aine, J. G. Nickel, J. M. Song, and W. C. Chew, "Solving large scale electromagnetic problems using a linux cluster and parallel MLFMA," IEEE Antennas Propag. Soc. Int. Symp., Vol. 1, 636-639, 1999.
7. Velamparambil, S., W. C. Chew, and M. L. Hastriter, Scalable electromagnetic scattering computations, IEEE Antennas Propag. Soc. Int. Symp., Vol. 3, 176-179, 2002.
8. Velamparambil, S., W. C. Chew, and J. M. Song, "10 Million unknowns: Is it that big?," IEEE Antennas Propagat. Mag., Vol. 45, No. 3, 43-58, Apr. 2003. 9. Sylvand, G., "Performance of a parallel implementation of the FMM for electromagnetics applications," Int. J. Numer. Meth. Fluids, Vol. 43, 865-879, 2003.
10. Velamparambil, S. and W. C. Chew, "Analysis and performance of a distributed memory multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2719-2727, 2005. 11. Gurel, L. and O. Ergul, "Fast and accurate solutions of extremely large integral-equation problems discretised with tens of millions of unknowns," Electronics Letters, Vol. 43, No. 9, 499-500, Apr. 2007. 12. Ergul, O and L. Gurel, "Parallel-MLFMA solution of CFIE discretized with tens of millions of unknowns," Proc. 2nd Europ. Conf. Antennas Propag. (EuCAP), Nov. 2007.
13. Pan, X.-M. and X. X.-Q. Sheng, "A sophisticated parallel MLFMA for scattering by extremely large targets," IEEE Antennas Propagat. Mag., Vol. 50, 129-138, Jun. 2008. 14. Ergul, O and L. Gurel, "Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering by extremely large targets," IEEE Antennas Propagat. Mag., Vol. 50, 129-138, Aug. 2008.
15. Ergul, O. and L. Gurel, "A hierarchical partitioning strategy for an e±cient parallelization of the multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1740-1750, Jun. 2009. 16. Wagner, R., J. M. Song, and W. C. Chew, "Montecarlo simulation of electromagnetic scattering from two-dimensional random rough surfaces ," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 235-245, Feb. 1997. 17. Waltz, C., K. Sertel, M. A. Carr, B. C. Usner, and J. L. Volakis, "Massively parallel fast multipole method solutions of large electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1810-1816, Jun. 2007. 18. Landesa, L., J. M. Taboada, F. Obelleiro, J. L. Rodriguez, C. Mourino, and A. Gomez, "Solution of very large integral-equation problems with single-level FMM," Microw. Opt. Technol. Lett., Vol. 51, No. 6, 20-28, Dec. 2009.
19. Taboada, J. M., L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, "High scalability FMM-FFT electromagnetic solver for supercomputer systems," IEEE Antennas Propagat. Mag., Vol. 51, No. 6, 20-28, Dec. 2009. 20. Taboada, J. M., L. Landesa, J. M. Bertolo, F. Obelleiro, J. L. Rodriguez, C. Mourino, and A. Gomez, "High scalablity multipole method for the analysis of hundreds of millions of unknowns," Proc. IEEE Europ. Conf. Antennas Propag. (EuCAP), Berlin, Germany, Mar. 2009.
21. Landesa, L., J. M. Taboada, J. L. Rodriguez, F. Obelleiro, J. M. Bertolo, J. C. Mourino, and A. Gomez, Analysis of 0.5 billion unknowns using a parallel FMMFFT solver, Proc. IEEE Antennas Propag. Soc. Int. Symp., Charleston (South Carolina), USA, Jun. 2009.
22. Araujo, M. G., J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodrguez, "Supercomputer aware approach for the solution of challenging electromagnetic problems," Progress In Electromagnetics Research, Vol. 101, 241-256, 2010. 23. Saad, Y. and M. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAMJ. Sci. Statist. Comput., Vol. 7, 856-869, 1986. 24. Gumerov, N. A., R. Duraiswami, and E. A. Borovikov, "Data structures, optimal choice of parameters and complexity results for generalized multilevel fast multipole methods in d dimensions ," UM Computer Science Technical Report CS-TR-4458 UMIACS, University of Maryland, 2003.
25. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, May 1982. 26. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, Inc., Norwood, MA, 1985.
|