PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 105 > pp. 347-364

IMPROVING SUBWAVELENGTH RESOLUTION OF MULTILAYERED STRUCTURES CONTAINING NEGATIVE-PERMITTIVITY LAYERS BY FLATTING THE TRANSMISSION CURVES

By Y. Jin

Full Article PDF (472 KB)

Abstract:
Multilayered structures consisting of alternating negative-permittivity and dielectric layers are explored to obtain high-resolution imaging of subwavelength objects. The peaks with the smallest |ky| (ky is the transverse wave vector) on the transmission curves, which come from the guided modes of the multilayered structures, can not be completely damped by material loss. This makes the amplitudes of the evanescent waves around these peaks inappropriate after transmitted through the imaging structures, and the imaging quality is not good. To solve such a problem, the permittivity of the dielectric layers is appropriately chosen to make these sharp peaks merge with their neighboring peaks, whose corresponding guiding modes in the multilayered structure are cutoff. Wide flat upheavals are then generated on the transmission curves so that evanescent waves in a large range are transmitted through the structures with appropriate amplitudes. In addition, it is found that the sharp peaks with the smallest |ky| can be eliminated by adding appropriate coating layers and wide flat upheavals can also be obtained.

Citation:
Y. Jin, "Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves," Progress In Electromagnetics Research, Vol. 105, 347-364, 2010.
doi:10.2528/PIER10051309
http://www.jpier.org/pier/pier.php?paper=10051309

References:
1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeabilit y," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966

3. Ramakrishna, S. A., "Physics of negative refractive index materials," Rep. Prog. Phys., Vol. 68, 449-521, Feb. 2005.
doi:10.1088/0034-4885/68/2/R06

4. Cui, T. J., D. R. Smith, and R. P. Liu, Metamaterials: Theory Design, and Applications, Springer, 2009.

5. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E, Vol. 70, 046608, Oct. 2004.
doi:10.1103/PhysRevE.70.046608

6. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Phys. Rev. Lett., Vol. 97, 157403, Oct. 2006.
doi:10.1103/PhysRevLett.97.157403

7. Ahmed, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated nihility cylinder," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 761-771, 2009.
doi:10.1163/156939309788019886

8. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.1163/156939309788355289

9. Qiao, S., G. A. Zheng, and L. X. Ran, "Enhancement of evanescent wave in an electrically anisotropic slab with partially negative permittivity tensor," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 10, 1341-1350, 2008.
doi:10.1163/156939308786348965

10. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, Apr. 2005.
doi:10.1126/science.1108759

11. Korobkin, D., Y. Urzhumov, and G. Shvets, "Enhanced near-FIeld resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B, Vol. 23, 468-478, Mar. 2005.

12. Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field microscopy through a SiC superlens," Science, Vol. 313, 1595, Sep. 2006.
doi:10.1126/science.1131025

13. Ramakrishna, S. A., J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near Field," J. Mod. Optics, Vol. 50, 1419-1430, Jun. 2003.

14. Pendry, J. B. and S. A. Ramakrishna, "Refining the perfect lens," Physica B, Vol. 338, 329-332, Oct. 2003.

15. Belov, P. A., Y. Hao, and S. Sudhakaran, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, 113110, Mar. 2006.
doi:10.1103/PhysRevB.73.113110

16. Shin, H. C. and S. H. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodi-electric photonic crystals," Appl. Phys. Lett., Vol. 89, 151102, Oct. 2006.

17. Wood, B., J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B, Vol. 74, 115116, Sep. 2006.
doi:10.1103/PhysRevB.74.115116

18. Webb, K. J. and M. Yang, "Subwavelength imaging with a multilayer silver film structure," Opt. Lett., Vol. 31, 2130-2132, 2006.
doi:10.1364/OL.31.002130

19. Feng, S. M. and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express, Vol. 14, 216-221, Jan. 2006.
doi:10.1364/OPEX.14.000216

20. Scalora, M., G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, "Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks," Opt. Express, Vol. 15, 508-523, Jan. 2007.
doi:10.1364/OE.15.000508

21. Bloemer, M., , G. D'Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett., Vol. 90, 174113, Apr. 2007.
doi:10.1063/1.2734496

22. Li, G. X., H. L. Tam, F. Y. Wang, and K. W. Cheah, "Superlens from complementary anisotropic metamaterials," J. Appl. Phys., Vol. 102, 116101, Dec. 2007.
doi:10.1063/1.2817538

23. Wang, C., Y. Zhao, D. Gan, C. Du, and X. Luo, "Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films," Opt. Express, Vol. 16, 4217-4227, Mar. 2008.
doi:10.1364/OE.16.004217

24. De Ceglia, D., M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A, Vol. 77, 033848, Mar. 2008.
doi:10.1103/PhysRevA.77.033848

25. Shi, L. H. and L. Gao, "Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites," Phys. Rev. B, Vol. 77, 195121, May 2008.
doi:10.1103/PhysRevB.77.195121

26. Li, X. and F. Zhuang, "Multilayered structures with high sub-wavelength resolution based on the metal-dielectric composites," J. Opt. Soc. Am. A, Vol. 26, 2521-2525, Dec. 2009.
doi:10.1364/JOSAA.26.002521

27. Kotynki, R. and T. Stefaniuk, "Multiscale analysis of subwave-length imaging with metal-dielectric multilayers," Opt. Lett., Vol. 35, 1133-1135, Apr. 2010.
doi:10.1364/OL.35.001133

28. Avrutsky, I., I. Salakhutdinov, J. Elser, and V. Podolskiy, "Highly confined optical modes in nanoscale metal-dielectric multilayers," Phys. Rev. B, Vol. 75, 241402, Jun. 2007.
doi:10.1103/PhysRevB.75.241402

29. Aspnes, D. E., "Local-field effects and effective-medium theory: A microscopic perspective," Am. J. Phys., Vol. 50, 704-709, 1982.
doi:10.1119/1.12734

30. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, Apr. 2007.
doi:10.1103/PhysRevB.75.155410

31. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

32. Luo, C. Y., S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B, Vol. 68, 045115, Jul. 2003.

33. Moreno, E., F. J. Garcia-Vidal, and L. Martin-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B, Vol. 69, 121402, Mar. 2004.
doi:10.1103/PhysRevB.69.121402

34. Jin, Y. and S. L. He, "Negative refraction of complex lattices of dielectric cylinders," Phys. Lett. A, Vol. 360, 461-466, Jan. 2007.
doi:10.1016/j.physleta.2006.06.011

35. Jin, Y., X. Li, and S. L. He, "Canalization for subwavelength focusing by a slab of dielectric photonic crystal," Phys. Rev. B, Vol. 75, 195126, May 2007.
doi:10.1103/PhysRevB.75.195126

36. Elser, J., V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, Nonlocal effects in effective-medium response of nanolayered metamaterials, Vol. 90, 191109, May 2007.


© Copyright 2014 EMW Publishing. All Rights Reserved