Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 106 > pp. 107-119


By B. Wang and K.-M. Huang

Full Article PDF (751 KB)

In this paper, mu and epsilon-near-zero (MENZ) metamaterials are used to convert the waves emitted from an embedded line source to various waveforms. The simulation results show that the converted waveforms are consistent with the exit face shape of the metamaterials. The power distributions in different beams are dependent on the length proportion of the exit faces due to its impedance matching with the surrounding media, which is different from the epsilon-near-zero (ENZ) metamaterials. A numerical verification with the finite element method (FEM) was presented, followed by physical insights into this phenomenon and theoretical analysis. We also propose some potential applications, including high directive emissions, multi-beams emissions.

B. Wang and K.-M. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.

1. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.

2. Smith, D. R., J. B. Pendry, and M. C. K. Wiltsgire, "Metamaterials and negative refractive index," Science, Vol. 305, 788, 2004.

3. Lepetit, T., E. Akmansoy, and J. P. Ganne, "Experimental measurement of negative index in an all-dielectric metamaterial," Appl. Phys. Lett., Vol. 95, 2009.

4. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77, 2001.

5. Akhlesh, L., "An electromagnetic trinity from negative permittivity and negative permeability," International Journal of Infrared and Millimeter Waves, Vol. 23, No. 6, 2002.

6. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.

7. Jiang, W. X., T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces," Appl. Phys. Lett., Vol. 92, No. 26, 2008..

8. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Phys. Rev. Lett., Vol. 97, 157403, 2006.

9. Tassin, P., X. Sahyoun, and V. Veretennicoff, "Miniaturization of photonic waveguides by the use of left-handed materials," Appl. Phys. Lett., Vol. 92, 203111, 2008.

10. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, No. 24, 2007.

11. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.

12. Cheng, X., H. Chen, X. M. Zhang, B. Zhang, and B. I. Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.

13. Starr, A. F. and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 2006.

14. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.

15. Cheng, Q., W. X. Jiang, and T. J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2008.

16. Zhang, J. J., Y. Luo, H. Chen, and B. I. Wu, "Sensitivity of transformation cloak in engineering," Progress In Electromagnetics Research, Vol. 84, 93-104, 2008.

17. Vafi, K., A. Javan, and M. Abrishamian, "Dispersive behavior of plasmonic and metamaterial coating on achieving transparency," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 941-952, 2008.

18. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, No. 15, 2007.

19. Ziolkowski, , R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E, Vol. 70, 2004.

20. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission ," Phys. Rev. Lett., Vol. 89, No. 21, 213902, 2002.

21. Yu, Y., L. F. Shen, L. X. Ran, T. Jiang, and J. T. Huangfu, "Directive emission based on anisotropic metamaterials," Phys. Rev. A , Vol. 77, 2008.

22. Wu, Q., P. Pan, F. Y. L. Meng, W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Appl. Phys. A., Vol. 87, 151-156, 2007.

23. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.

24. Yang, J. J., M. Huang, and J. H. Peng, "Directive emission obtained by Mu and epsilon-near-zero metamaterials," Radio Engineering, Vol. 18, 2009.

25. Weng, Z. B., X. M. Wang, and Y. Song, "A directive patch antenna with arbitrary ring aperture lattice metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1763-1772, 2009.

26. Zhou, H., Z. Pei, and S. Qu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.

27. Weng, Z. B., Y. C. Jiao, G. Zhao, and F. S. Zhang, "Design and experiment of one dimension and two dimension metamaterial structures for directive emission," Progress In Electromagnetics Research, Vol. 70, 199-209, 2007.

28. Zhang, J., Y. Luo, H. Chen, L. Ran, B. I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress In Electromagnetics Research, Vol. 81, 2008.

29. Kong, F., B. I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, .

30. Yang, Y., X. Zhao, and T. Wang, "Design of arbitrarily controlled multi-beam antennas via optical transformation," J. Infrared Milli Terahz Waves, Vol. 30, 337-348, 2009.

31. Turpin, J. P., A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, "Conformal mappings to achieve simple material parameters for transformation optics devices," Optics Express, Vol. 18, No. 1, 2010.

32. Vendik, I. B., M. A. Odit, and D. S. Kozlov, "3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions," Metamaterials, Vol. 3, 140-147, 2009.

33. Anthony, G. and V. E. George, "Isotropic three-dimensional negative-index transmission- line metamaterial," Journal of Applied Physics, Vol. 98, 043106, 2005.

34. Baena, J. D., "Electrically small isotropic three-dimensional magnetic resonators for metamaterial design," Appl. Phys. Lett., Vol. 88, 2006.

35. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 74, No. 4, 2001.

36. Koschny, T., L. Zhang, and C. M. Soukoulis, "Isotropic three-dimensional left-handed metamaterials," Physical Review B, Vol. 71, 2005.

37. Matra, K. and N. Wongkasem, "Left-handed chiral isotropic metamaterials: Analysis and detailed numerical study," Journal of Optics A: Pure and Applied Optics, Vol. 11, 2009.

© Copyright 2014 EMW Publishing. All Rights Reserved