Vol. 108

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-09-09

Perfect Metamaterial Absorber with Dual Bands

By Minhua Li, He-Lin Yang, Xi-Wen Hou, Yan Tian, and Dong-Yun Hou
Progress In Electromagnetics Research, Vol. 108, 37-49, 2010
doi:10.2528/PIER10071409

Abstract

In this paper, we present the design, simulation, and measurement of a dual-band metamaterial absorber in the microwave region. Simulated and experimental results show that the absorber has two perfect absorption points near 11.15GHz and 16.01GHz. Absorptions under different polarizations of incident EM waves are measured with magnitude of over 97% at low-frequency peak and 99% at high-frequency peak respectively. Current distribution at the dual absorptive peaks is also given to study the physical mechanism of power loss. Moreover, it is verified by experiment that the absorptions of this kind of metamaterial absorber remain over 90% at the low-frequency peak and 92% at the high-frequency peak with wide incident angles ranging from 0° to 60° for both transverse electric wave and transverse magnetic wave.

Citation


Minhua Li, He-Lin Yang, Xi-Wen Hou, Yan Tian, and Dong-Yun Hou, "Perfect Metamaterial Absorber with Dual Bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409
http://www.jpier.org/PIER/pier.php?paper=10071409

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phy. Usp, Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Xi, S., H. Chen, B.-I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, Vol. 84, 279-287, 2008.
    doi:10.2528/PIER08062105

    3. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
    doi:10.1163/156939309788355289

    4. Ramprecht, J., M. Norgren, and D. Sjoberg, "Scattering from a thin magnetic layer with a periodic lateral magnetization: Application to electromagnetic absorbers," Progress In Electromagnetics Research, Vol. 83, 199-224, 2008.
    doi:10.2528/PIER08042805

    5. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    6. Sabah, C. and S. Uckun, "Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
    doi:10.2528/PIER09031306

    7. Si, L.-M. and X. Lv, "CPW-FED multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
    doi:10.2528/PIER08050404

    8. Khalilpour, J. and M. Hakkak, "S-shaped ring resonator as anisotropic uniaxial metamaterial used in waveguide tunneling," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1763-1772, 2009.
    doi:10.1163/156939309789566879

    9. Hwang, R.-B., H.-W. Liu, and C.-Y. Chin, "A metamaterial-based e-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
    doi:10.2528/PIER09050606

    10. Wiltshire, M. C. K., J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science, Vol. 291, 849-851, 2001.
    doi:10.1126/science.291.5505.849

    11. Gokkavas, M., K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B, Vol. 73, 193103-1-193103-5, 2006.

    12. Lin, X. Q., T. J. Cui, Y. Fan, and X. Liu, "Frequency selective surface designed using electric resonant structures in terahertz frequency bands," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 21-29, 2009.
    doi:10.1163/156939309787604724

    13. Linden, S., C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science, Vol. 306, 1351-1353, 2004.
    doi:10.1126/science.1105371

    14. Zhang, S., W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404-1-137404-5, 2005.

    15. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780nm wavelength," Opt. Lett., Vol. 32, 53-55, 2007.
    doi:10.1364/OL.32.000053

    16. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
    doi:10.2528/PIER07101702

    17. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 2074021-2074024, 2008.

    18. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B, Vol. 79, 045131, 2009.
    doi:10.1103/PhysRevB.79.045131

    19. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plamonic meamaterial," Appl. Phys. Lett., Vol. 96, 251104, 2010.
    doi:10.1063/1.3442904

    20. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B, Vol. 78, 241103(R), 2008.
    doi:10.1103/PhysRevB.78.014426

    21. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Transactions on Antennas and Propagation, Vol. 8, No. 48, 1230-1234, 2000.
    doi:10.1109/8.884491

    22. Kazemzadeh, A. and A. Karlsson, "Capacitive circuit method for fast and efficient design of wideband radar absorber," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2307-2314, 2009.
    doi:10.1109/TAP.2009.2024490

    23. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 0331081-0331083, 2009.
    doi:10.1103/PhysRevB.80.085309

    24. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
    doi:10.2528/PIER10011110

    25. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wide-angle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.
    doi:10.2528/PIERL07111809

    26. Wang, J. F., S. B. Qu, Z. T. Fu, H. Ma, Y. M. Yang, X.Wu, X. Xu, and M. J. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
    doi:10.2528/PIERL09012003

    27. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111-1-241111-3, 2009.
    doi:10.1063/1.3213561

    28. Han, T. C., X. H. Tang, and F. Xiao, "The petal-shaped cloak," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2055-2062, 2009.
    doi:10.1163/156939309789932511

    29. Luo, Y., J. Zhang, H. Chen, B.-I. Wu, and L.-X. Ran, "Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect," Progress In Electromagnetics Research, Vol. 95, 167-178, 2009.
    doi:10.2528/PIER09070805

    30. Cheng, Q., W. X. Jiang, and T.-J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2008.

    31. Zhao, J., Y. Feng, B. Zhu, and T. Jiang, "Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms," Opt. Express, Vol. 16, 18057-18066, 2008.
    doi:10.1364/OE.16.018057