PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 109 > pp. 381-398

HYBRID METHOD OF HIGHER-ORDER MOM AND NYSTRÖM DISRETIZATION PO FOR 3D PEC PROBLEMS

By B. Lai, N. Wang, H.-B. Yuan, and C.-H. Liang

Full Article PDF (360 KB)

Abstract:
This paper presents an efficient and accurate hybrid approach of method of moments (MoM) and physical optics (PO) for radiation problems such as antennas mounted on a large platform. The new method employs higher-order hierarchical Legendre basis functions in the MoM region and higher-order Nyström scheme in the PO region. The two regions are both discretized with large domains. The unknowns can be much less than those in the small-domain MoM-PO solutions, which will lead to a great reduction in computation complexity. Furthermore, with the Nyström scheme in the PO region, the higher-order accuracy is maintained, and the calculation of the impedances can be more efficient than that in the existing higher-order MoM-PO procedure. Numerical results show the validity of the proposed method.

Citation:
B. Lai, N. Wang, H.-B. Yuan, and C.-H. Liang, "Hybrid Method of Higher-Order MoM and NystrÖM Disretization PO for 3D PEC Problems," Progress In Electromagnetics Research, Vol. 109, 381-398, 2010.
doi:10.2528/PIER10081401
http://www.jpier.org/PIER/pier.php?paper=10081401

References:
1. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE, New York, 1993.
doi:10.1109/9780470544631

2. Bouche, D. P., F. A. Molinet, and R. Mittra, "Asymptotic and hybrid techniques for electromagnetic scattering," Proc. IEEE, Vol. 81, No. 12, 1658-1684, Dec. 1993.
doi:10.1109/5.248956

3. Kim, C. S. and Y. Rahmat-Samii, "Low profile antenna study using the physical optics hybrid method (POHM)," Proc. IEEE Int. Symp. Antennas Propagat. Soc. Meeting, London, Ont, Canada, Jun. 1991.

4. Hodges, R. E. and Y. Rahmat-Samii, "An iterative current-based hybrid method for complex structures," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 265-276, Feb. 1997.
doi:10.1109/8.560345

5. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 43, No. 2, 162-169, Feb. 1995.
doi:10.1109/8.366378

6. Jakobus, U. and F. M. Landstorfer, "Improvement of the PO-MM hybrid method by accounting for effects of perfectly conducting wedges," IEEE Trans. Antennas Propag., Vol. 43, No. 10, 1123-1129, Oct. 1995.
doi:10.1109/8.467649

7. Taboada, J. M., F. Obelleieo, and J. L. Rodríguez, "Improvement of the hybrid moment method-physical optics method through a novel ecaluation of physical optics operator," Microw. Opt. Technol. Lett., Vol. 30, No. 5, 357-363, Sep. 2001.
doi:10.1002/mop.1314

8. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

9. Djordjević, M. and B. M. Notaroš, "Double higher-order method of moments for surface integral equation modeling of metallic and dielectric antennas and structures," IEEE Trans. Antennas Propag., Vol. 52, No. 8, 2118-2129, Aug. 2004.
doi:10.1109/TAP.2004.833175

10. Jørgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical Legendre basis functions for electromagnetic modeling," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2985-2995, Nov. 2004.
doi:10.1109/TAP.2004.835279

11. Yuan, H. B., N. Wang, and C. H. Liang, "Fast algorithm to extract the singularity of higher order moment method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1250-1257, 2008.
doi:10.1163/156939308784158904

12. Ding, D.-Z., R.-S. Chen, and Z. Fan, "An efficient sai preconditioning technique for higher order hierarchical mlfmm implementation," Progress In Electromagnetics Research, Vol. 88, 255-273, 2008.
doi:10.2528/PIER08111501

13. Lai, B., X. An, H. B. Yuan, N. Wang, and C. H. Liang, "AIM analysis of 3D PEC problems using higher-order hierarchical basis functions," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1417-1421, Apr. 2010.
doi:10.1109/TAP.2010.2041153

14. Jørgensen, E., P. Meincke, and O. Breinbjerg, "A hybrid PO-higher-order hierarchical MoM formulation using curvilinear geometry modeling," IEEE Antennas and Propagation Soc. Int. Symp. Dig., Vol. 4, 98-101, Columbus, OH, Jun. 22-27, 2003.

15. Djordjević, M. and B. M. Notaroš, "Higher-order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 800-813, Feb. 2005.
doi:10.1109/TAP.2004.841318

16. Zhang, Y., X. W. Zhao, M. Chen, and C. H. Liang, "An efficient MPI virtual topology based parallel, iterative MoM-PO hybrid method on PC cluster," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 661-676, 2006.
doi:10.1163/156939306776137782

17. Chen, M., X. W. Zhao, Y. Zhang, and C. H. Liang, "Analysis of antenna around nurbs surface with iterative MoM-PO technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1667-1680, 2006.
doi:10.1163/156939306779292372

18. Chen, M., Y. Zhang, X. W. Zhao, and C. H. Liang, "Analysis of antenna around NURBS surface with hybrid MoM-PO technique," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 407-413, Feb. 2007.
doi:10.1109/TAP.2006.889814

19. Liu, Z.-L. and J. Yang, "Analysis of electromagnetic scattering with higher-order moment method and nurbs model," Progress In Electromagnetics Research, Vol. 96, 83-100, 2009.
doi:10.2528/PIER09071704

20. Yuan, H. B., N. Wang, and C. H. Liang, "Combining the higher order method of moments with geometric modeling by nurbs surfaces," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3558-3563, Nov. 2009.
doi:10.1109/TAP.2009.2023095

21. Hu, B., X.-W. Xu, M. He, and Y. Zheng, "More accurate hybrid po-mom analysis for an electrically large antenna-radome structure," Progress In Electromagnetics Research, Vol. 92, 255-265, 2009.
doi:10.2528/PIER09022301

22. Canning, L. F., J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. M.Wandzura, "Numerical solution of the Helmholtz equation in 2D and 3D using a high-order NystrÄom discretizetion," J. Comput. Phys., Vol. 146, No. 2, 627-663, 1998.
doi:10.1006/jcph.1998.6077

23. Gedney, S. D., "Higher-order method of moments solution of the scattering by three-dimensional PEC bodies using Quadrature based point matching," Microw. Opt. Technol. Lett., Vol. 29, No. 5, 303-309, Jun. 2001.
doi:10.1002/mop.1162

24. Gedney, S. D., "On deriving a locally corrected Nyström scheme from a quadrature sampled moment method," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2402-2412, Sep. 2003.
doi:10.1109/TAP.2003.816305

25. Çalíşkan, F. and A. F. Peterson, "The need for mixed-order representations with the locally corrected Nyström method," IEEE Antennas and Wireless Propagat. Lett., Vol. 2, 72-73, 2003.

26. Duffy, M. G., "Quadrature over a pyramid or cube of integrands with a singularity at vertex," SIAM J. Numer. Anal., Vol. 19, No. 6, 1260-1262, Dec. 1982.
doi:10.1137/0719090

27. Ewe, W. B., L. W. Li, Q. Wu, and M. S. Leong, "Analysis of reflector and horn antennas using adaptive integral method," IEICE Trans. Commun., Vol. E88-B, No. 6, Jun. 2005.
doi:10.1093/ietcom/e88-b.6.2327


© Copyright 2014 EMW Publishing. All Rights Reserved