Vol. 109
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-06
Novel Two-Layer Millimeter-Wave Slot Array Antennas Based on Substrate Integrated Waveguides
By
Progress In Electromagnetics Research, Vol. 109, 475-491, 2010
Abstract
A novel slot array antenna with two layers of substrate integrated waveguides (SIW) is presented for millimeter-wave wireless applications. Unlike conventional SIW-based slot arrays, in this structure a feed waveguide is placed underneath the main substrate layer containing the slot array and is coupled to the branches of the array via slanted slots. The proposed feeding structure results in a considerable reduction in size and eliminates unwanted radiations from the feed network. Experimental results for two slot arrays with 4×4 and 6×6 elements operating at 60 GHz are presented showing 14.8 dB and 18.5 dB gain, respectively. Furthermore, a novel doubly tapered transition between SIW and microstrip line is presented which is particularly useful in mm-wave applications.
Citation
Ahmad Bakhtafrooz, Amir Borji, Dan Busuioc, and Safieddin Safavi-Naeini, "Novel Two-Layer Millimeter-Wave Slot Array Antennas Based on Substrate Integrated Waveguides," Progress In Electromagnetics Research, Vol. 109, 475-491, 2010.
doi:10.2528/PIER10091706
References

1. Hirokawa, J. and M. Ando, "76 GHz post-wall waveguide-fed parallel plate slot arrays for car-radar applications," IEEE AP-S Int. Symp., Vol. 1, 98-101, 2000.

2. Kimura, Y., et al., "A low-cost and very compact wireless terminal integrated on the back of a waveguide planar array for 26 GHz band FWA systems," IEEE Trans. Antennas Propagat., Vol. 53, No. 8, 2456-2462, Aug. 2005.
doi:10.1109/TAP.2005.852320

3. Yang, S., S. H. Suleiman, and A. E. Fathy, "Ku-band slot array antennas for low profile mobile DBS applications: Printed vs. machined," IEEE AP-S Int. Symp., 3137-3140, 2006.

4. Vincenti Gatti, R and R. Sorrentino, "A Ka-band active scanning array for mobile satellite terminals using slotted waveguide technology," 25th Antenna Workshop on Satellite Antenna Technology, Noordwijk, The Netherlands, Sep. 2002.

5. Nakano, H., et al., "Cost effective 60 GHz modules with a post-wall planar antenna for gigabit home-link system," Proc. 33rd European Microwave Conference, 891-894, 2003.
doi:10.1109/EUMA.2003.341105

6. Hua, Y. and J.-Y. Li, "Analysis of longitudinal shunt waveguide slots using FEBI," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2041-2046, 2009.
doi:10.1163/156939309789932520

7. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 2, 593-596, Feb. 2003.
doi:10.1109/TMTT.2002.807820

8. Wang, R., L.-S. Wu, and X.-L. Zhou, "Compact folded substrate integrated waveguide cavities and bandpass filter," Progress In Electromagnetic Research, Vol. 84, 135-147, 2008.
doi:10.2528/PIER08071501

9. Li, R., X. Tang, and F. Xiao, "A novel substrate integrated waveguide square cavity dual-mode filter," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2523-2529, 2009.

10. Lee, S., S. Yang, A. E. Fathy, and A. Elsherbini, "Development of a novel UWB vivaldi antenna array using SIW technology," Progress In Electromagnetic Research, Vol. 90, 369-384, 2009.

11. Yan, L., W. Hong, G. Hua, J. Chen, K. Wu, and T. J. Cui, "Simulation and experiment on SIW slot array antennas," IEEE Microwave Wireless Comp. Letters, Vol. 14, No. 9, 446-448, Sep. 2004.
doi:10.1109/LMWC.2004.832081

12. Cheng, S., H. Yousef, and H. Kratz, "79 GHz slot antennas based on substrate integrated waveguides (SIW) in a flexible printed circuit board," IEEE Trans. Antennas Propagat., Vol. 57, No. 1, 64-70, Jan. 2009.
doi:10.1109/TAP.2008.2009708

13. Bakhtafrooz, A., A. Borji, D. Busuioc, and S. Safavi-Naeini, "Compact two-layer slot array antenna with SIW for 60 GHz wireless applications," IEEE AP-S Int. Symp., 1-4, Jun. 2009.

14. Elliott, R. S., "An improved design procedure for small arrays of shunt slots," IEEE Trans. Antennas Propagat., Vol. 31, No. 1, 48-53, Jan. 1983.
doi:10.1109/TAP.1983.1143002

15. Elliott, R. S. and W. R. O'Loughlin, "The design of slot arrays including internal mutual coupling," IEEE Trans. Antennas Propagat., Vol. 34, No. 9, 1149-1154, Sep. 1986.
doi:10.1109/TAP.1986.1143947

16. Elliot, R. S., "The design of waveguide-fed slot arrays," Antenna Handbook, Y. T. Lo and S. W. Lee (eds.), Chap. 12, Van Nostrand Reinhold, New York, 1993.

17. Stern, G. J. and R. S. Elliott, "Resonant length of longitudinal slots and validity of circuit representation: Theory and experiment," IEEE Trans. Antennas Propagat., Vol. 33, No. 11, 1264-1271, Nov. 1985.
doi:10.1109/TAP.1985.1143509

18. Coetzee, J. C. and J. Joubert, "Analysis procedure for arrays of waveguide slot doublets based on the full T-netwrok equivalent circuit representaion of radiators," IEE Proc. Microw. Antennas Propag., Vol. 147, No. 3, 173-178, Jun. 2000.
doi:10.1049/ip-map:20000362

19. Rengarajan, S. R., "Analysis of a center-inclined waveguide slot coupler," IEEE Trans. Microwave Theory Tech., Vol. 37, No. 5, 884-889, May 1989.
doi:10.1109/22.17455

20. Rengarajan, S. R. and G. M. Shaw, "Accurate characterization of coupling junctions in waveguide-fed planar slot arrays," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2239-2248, Dec. 1994.
doi:10.1109/22.339748

21. Rengarajan, S. R., "Higher order mode coupling effects in the feeding waveguide of a planar slot array," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 7, 1219-1223, Jul. 1991.
doi:10.1109/22.85390

22. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 1, 66-72, Jan. 2005.
doi:10.1109/TMTT.2004.839303

23. Yan, L., W. Hong, K. Wu, and T. J. Cui, "Investigations of the propagation characteristics of the substrate integrated waveguide based on the method of lines," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 152, No. 1, 35-42, Feb. 2005.
doi:10.1049/ip-map:20040726

24. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave Wireless Comp. Letters, Vol. 11, No. 2, 68-70, Feb. 2001.
doi:10.1109/7260.914305

25. Horn, A., "Dielectric constant and loss of selected grades of Rogers high frequency circuit substrates from 1-50 GHz,", Tech. Rep. 5788, Rogers Corp., Rogers, CT, Sep. 2003.