PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 116 > pp. 475-515

APPLICATION OF THE NEWTON METHOD TO IMPROVE THE ACCURACY OF TOA ESTIMATION WITH THE BEAMFORMING ALGORITHM AND THE MUSIC ALGORITHM

By J.-H. Lee, Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, and K. S. J. Pister

Full Article PDF (1,225 KB)

Abstract:
In this paper, a numerical method for improving the performance of the beamforming algorithm and the MUSIC algorithm for TOA (Time-of-Arrival) estimation is presented. It has been shown that the conventional beamforming algorithm and the MUSIC algorithm can be used for time delay estimation. Using the beamforming algorithm and the MUSIC algorithm for TOA estimation, the initial estimate for the TOA is obtained. To improve the accuracy of the TOA estimation, we apply the Newton iteration to the initial estimate. The initial estimates obtained from the beamforming algorithm and the MUSIC algorithm are updated to obtain the final estimates which are more accurate than the initial estimates in terms of the RMSE (Root Mean Square Error). To find the TOA which maximizes the beamforming spectrum or the MUSIC spectrum, we find the TOA at which the derivative of the beamforming spectrum with respect to the delay is zero. To find numerically the TOA at which the derivative of the beamforming spectrum or the MUSIC spectrum is zero, the Newton iteration is adopted. In numerical results, the validity of the proposed scheme is illustrated using various examples.

Citation:
J.-H. Lee, Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, and K. S. J. Pister, "Application of the Newton Method to Improve the Accuracy of Toa Estimation with the Beamforming Algorithm and the MUSIC Algorithm," Progress In Electromagnetics Research, Vol. 116, 475-515, 2011.
doi:10.2528/PIER10112608
http://www.jpier.org/PIER/pier.php?paper=10112608

References:
1. Jeong, Y.-S. and J.-H. Lee, "Estimation of time delay using conventional beamforming-based algorithm for UWB systems," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2413-2320, 2007.
doi:10.1163/156939307783134281

2. Yamada, H., M. Ohmiya, Y. Ogawa, and K. Itoh, "Superreso-lution techniques for time-domain measurements with a network analyzer," IEEE Trans. Antennas and Propagation, Vol. 39, No. 2, 177-183, 1991.
doi:10.1109/8.68179

3. Ki, X. and K. Pahlavan, "Super-resolution TOA estimation with diversity for indoor geolocation," IEEE Trans. Wireless Communications, Vol. 3, No. 1, 224-234, 2004.
doi:10.1109/TWC.2003.819035

4. Kwon, H.-J., J.-H. Lee, Y.-S. Jeong, and S.-H. Jo, "Timing synchronization for performance improvement of TOA in UWB MB-OFDM systems ," The Journal of Korea Information and Communications Society, Vol. 32, No. 5, 550-555, May 2007.

5. Zhao, F., W. Yao, C. C. Logothetis, and Y. Song, "Super-resolution TOA estimation in OFDM systems for indoor environments ," Proceedings of the IEEE International Conference on Networking, Sensing and Control, 723-728, 2007.
doi:10.1109/ICNSC.2007.372869

6. Li, X., K. Pahlavan, and J. Beneat, "Performance of TOA estimation techniques in indoor multipath channels," Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Vol. 2, 911-915, 2002.

7. Sieskul, B. T., F. Zheng, and T. Kaiser, "A hybrid SS-ToA wireless NLoS geolocation based on path attenuation: ToA estimation and CRB for mobile position estimation," IEEE Transactions on Vehicular Technology, Vol. 58, No. 9, 4930-4942, 2009.
doi:10.1109/TVT.2009.2024156

8. Wang, Y., G. Leus, and H. Delic, "TOA estimation using UWB with low sampling rate and clock drift calibration," IEEE International Conference on Ultrawideband, 612-617, 2009.
doi:10.1109/ICUWB.2009.5288706

9. Zhang, T., Q. Zhang, and N. Zhang, "A two-step TOA estimation method based on energy detection for IR-UWB sensor networks," Proceedings of Communication Networks and Services Research Conference (CNSR), Seventh Annual, 139-145, 2009.

10. Kelley, C. T., Solving Nonlinear Equations with Newton's Method, No. 1 in Fundamentals of Algorithms, SIAM, 2003.

11. Ortega, J. M. and W. C. Rheinboldt, "Iterative Solution of Nonlinear Equations in Several Variables, Classics in Applied Mathematics ," SIAM, 2000.

12. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-ling, "Numerical recipes: The art of scientific computing," Cambridge University Press, 2007, ISBN 0-521-88068-8 (available for a fee online, with code samples [4]).

13. Tayebi, A., J. Gomez, F. Saez de Adana, and O. Gutierrez, "The application of ray-tracing to mobile localization using the direction of arrival and received signal strength in multipath indoor environments," Progress In Electromagnetics Research, Vol. 91, 1-15, 2009.
doi:10.2528/PIER09020301

14. Chen, J.-F., Z.-G. Shi, S.-H. Hong, and K. S. Chen, "Grey prediction based particle filter for maneuvering target tracking," Progress In Electromagnetics Research, Vol. 93, 237-254, 2009.
doi:10.2528/PIER09042204

15. Song, H. B., H.-G. Wang, K. Hong, and L. Wang, "A novel source localization scheme based on unitary esprit and city electronic maps in urban environments," Progress In Electromagnetics Research, Vol. 94, 243-262, 2009.
doi:10.2528/PIER09051703

16. H.-Q., H.-C. So, K. W. K. Lui, F. K. W. Chan, "Sensor selection for target tracking in sensor networks," Progress In Electromagnetics Research, Vol. 95, 267-282, 2009.

17. Liu, H.-Q. and H.-C. So, "Target tracking with line-of-sight identi¯cation in sensor networks under unknown measurement noises," Progress In Electromagnetics Research, Vol. 97, 373-389, 2009.
doi:10.2528/PIER09090701

18. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetics Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705

19. Mitilineos, S. A. and S. C. A. Thomopoulos, "Positioning accuracy enhancement using error modeling via a polynomial approximation approach," Progress In Electromagnetics Research, Vol. 102, 49-64, 2010.
doi:10.2528/PIER10010102

20. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal MUSIC method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408

21. Mitilineos, S. A., D. M. Kyriazanos, O. E. Segou, J. N. Goufas, and S. C. A. Thomopoulos, "Indoor localisation with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.
doi:10.2528/PIER10062801

22. Bahillo Martinez, A., S. Mazuelas Franco, J. Prieto Tejedor, R. M. Lorenzo Toledo, P. Fernandez Reguero, and E. J. Abril, "Indoor location based on IEEE 802.11 round-trip time measurements with two-step NLOS mitigation ," Progress In Electromagnetics Research B, Vol. 15, 285-306, 2009.
doi:10.2528/PIERB09050409

23. Lazaro, A., D. Girbau, and R. Villarino, "Weighted centroid method for breast tumor localization using an UWB radar," Progress In Electromagnetics Research B, Vol. 24, 1-15, 2010.
doi:10.2528/PIERB10063004

24. Gomez, J., A. Tayebi, F. Saez de Adana, and O. Gutierrez, "Localization approach based on ray-tracing including the effect of human shadowing ," Progress In Electromagnetics Research Letters, Vol. 15, 1-11, 2010.
doi:10.2528/PIERL10030908

25. Liang, G., W. Gong, H. Liu, and J. Yu, "Development of 61-channel digital beamforming (DBF) transmitter array for mobile satellite communication," Progress In Electromagnetics Research, Vol. 97, 177-195, 2009.
doi:10.2528/PIER09082303

26. Liang, G., W. Gong, H. Liu, and J. Yu, "A semi-physical simulation system for DBF transmitter array on Leo satellite," Progress In Electromagnetics Research, Vol. 97, 197-215, 2009.
doi:10.2528/PIER09081904

27. Li, G., S. Yang, Y. Chen, and Z.-P. Nie, "A novel electronic beam steering technique in time modulated antenna array," Progress In Electromagnetics Research, Vol. 97, 391-405, 2009.
doi:10.2528/PIER09072602

28. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902

29. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with sub-array divided technique and interporlated ESPRIT algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904

30. Alsehaili, M., S. Noghanian, A. R. Sebak, and D. A. Buchanan, "Angle and time of arrival statistics of a three dimensional geometrical scattering channel model for indoor and outdoor propagation environments ," Progress In Electromagnetics Research, Vol. 109, 191-209, 2010.
doi:10.2528/PIER10081106

31. Castaldi, G., V. Galdi, and G. Gerini, "Evaluation of a neural-network-based adaptive beamforming scheme with magnitude-only constraints," Progress In Electromagnetics Research B, Vol. 11, 1-14, 2009.
doi:10.2528/PIERB08092303

32. Palanisamy, P. and N. Rao, "Direction of arrival estimation based on fourth-order cumulant using propagator method," Progress In Electromagnetics Research B, Vol. 18, 83-99, 2009.
doi:10.2528/PIERB09081806

33. Zhang, X., G. Feng, and D. Xu, "Blind direction of angle and time delay estimation algorithm for uniform linear array employing multi-invariance MUSIC," Progress In Electromagnetics Research Letters, Vol. 13, 11-20, 2010.
doi:10.2528/PIERL09102611


© Copyright 2014 EMW Publishing. All Rights Reserved