Vol. 113

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Numerical Analysis of Enhanced Transmission through a Single Subwavelength Aperture Based on Mie Resonance Single Particle

By Lei Kang, Veronique Sadaune, and Didier Lippens
Progress In Electromagnetics Research, Vol. 113, 211-226, 2011


We numerically demonstrate that the transmission through a deep subwavelength (λ0/20) aperture in a metal plate could be greatly enhanced owing to the resonance effects of a high permittivity (κ) dielectric cube tightly coupled to the aperture. The transmission enhancement originates from the confinement and re-radiation of the electromagnetic energy impinging onto the high κ cube which operates in the 1st Mie resonance mode, and behaves as an ultra-small magnetic dipole antenna. The complex permittivity of the cube governs the operating frequency and the enhancement in terms of bandwidth and transmissivity maximum. Additionally, based on the isotropic response of the high κ cube with dimensions comparable to the aperture size, the almost independence of the enhancement properties on the illumination polarization and incidence angle was assessed.


Lei Kang, Veronique Sadaune, and Didier Lippens, "Numerical Analysis of Enhanced Transmission through a Single Subwavelength Aperture Based on Mie Resonance Single Particle," Progress In Electromagnetics Research, Vol. 113, 211-226, 2011.


    1. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, 39-46, 2007.

    2. Bethe, H. A. and Theory of diffraction by small holes, Phys. Rev., Vol. 66, 163-182, 1944.

    3. Garcia-Vidal, F. J., E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett., Vol. 95, 103901, 2005.

    4. Chang, C. W., A. K. Sarychev, and V. M. Shalaev, "Light di®raction by a subwavelength circular aperture," Laser Phys. Lett., Vol. 2, 351-355, 2005.

    5. Popov, E., N. Bonod, M. Neviµere, H. Rigneault, P.-F. Lenne, and P. Chaumet, "Surface plasmon excitation on a single subwavelength hole in a metallic sheet," Appl. Opt., Vol. 44, 2332-2337, 2005.

    6. Webb, K. J. and J. Li, "Analysis of transmission through small apertures in conducting films," Phys. Rev. B, Vol. 73, 033401, 2006.

    7. Garcia de Abajo, F., "Light transmission through a single cylindrical hole in a metallic ¯lm," Opt. Express, Vol. 10, 1475-1484, 2002.

    8. Popov, E., M. Neviere, A. Sentenac, N. Bonod, A.-L. Fehrembach, J. Wenger, P.-F. Lenne, and H. Rigneault, "Single-scattering theory of light di®raction by a circular subwavelength aperture in a finitely conducting screen," J. Opt. Soc. Am. A, Vol. 24, 339-358, 2007.

    9. Michalski, K. A., "Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen," Progress In Electromagnetics Research B, Vol. 27, 253-272, 2011.

    10. Obermuller, C. and K. Karrai, "Far-field characterization of diffracting apertures," Appl. Phys. Lett., Vol. 67, 3408-3410, 1995.

    11. Degiron, A., H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal ," Opt. Commun., Vol. 239, 61-66, 2004.

    12. Yin, L., V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface palsmons at single nanoholes in Au films," Appl. Phys. Lett., Vol. 85, 467-469, 2004.

    13. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, 2002.

    14. Akarca-Biyikli, S. S., I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett., Vol. 85, 1098-1100, 2004.

    15. Aydin, K., A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, "Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture ," Phys. Rev. Lett., Vol. 102, 013904, 2009.

    16. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Techn., Vol. 47, 2075-2084, 1999.

    17. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix ," IEEE Trans. Antennas Propag., Vol. 51, 2596-2603, 2003.

    18. Schuller, J. A., R. Zia, T. Taubner, and M. L. Brongersma, "Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles ," Phys. Rev. Lett., Vol. 99, 107401, 2007.

    19. Popa, B. and S. A. Cummer, "Compact dielectric particles as a building block for low-loss magnetic metamaterials," Phys. Rev. Lett., Vol. 100, 207401, 2008.

    20. Zhao, Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.

    21. Nemec, H., P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, "Tunable terahertz metamaterials with negative permeability," Phys. Rev. B, Vol. 79, 241108(R), 2009.

    22. Zhang, F., Q. Zhao, L. Kang, J. Zhou, and D. Lippens, "Experimental vericafition of isotropic and polarization properties of high permittivity-based metamaterial," Phys. Rev. B, Vol. 80, 195119, 2009.

    23. Zhao, Q., J. Zhou, F. Zhang, and D. Lippens, "Mie resonance based dielectric metamaterial," Materials Today, Vol. 12, 60, 2009.

    24. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.

    25. Balanis, C., Antenna Theory, Analysis, and Design, 2nd Ed., Wiley, New York, 1997.

    26. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011.

    27. Vendik, O. G., L. T. Ter-Martirosyan, and S. P. Zubko, "Microwave losses in incipient ferroelectrics as functions of the temperature and the biasing field," J. Appl. Phys., Vol. 84, 993-998, 1998.

    28. Geyer, R. G., B. Riddle, J. Krupka, and L. A. Boatner, "Microwave dielectric properties of single-crystal quantum paraelectrics KTaO3 and SrTiO3 at cryogenic temperatures," J. Appl. Phys., Vol. 97, 104111, 2005.

    29. Vendik, O. G. and S. P. Zubko, "Modeling the dielectric response of incipient ferroelectrics," J. Appl. Phys., Vol. 82, 4475-4483, 1997.

    30. Shaw, T. M., Z. Suo, M. Huang, E. Liniger, R. B. Laibowitz, and J. D. Baniecki, "The effect of stress on the dielectric properties of barium strontium titanate thin films," Appl. Phys. Lett., Vol. 75, 2129-2131, 1999.

    31. Molla, J., M. Gonzalez, R. Vila, and A. Ibarra, "Effect of humidity on microwave dielectric losses of porous alumina," J. Appl. Phys., Vol. 85, 1727-1730, 1999.

    32. Zhao, Q., B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, "Tunable negative permeability in an isotropic dielectric composite," Appl. Phys. Lett., Vol. 92, 051106, 2008.