PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 114 > pp. 195-210

SPATIAL MICROWAVE POWER COMBINING WITH ANISOTROPIC METAMATERIALS

By B. Wang and K.-M. Huang

Full Article PDF (1,053 KB)

Abstract:
This paper proposes a novel approach for the spatial microwave power combining. Anisotropic metamatierials are employed to trim the combined electrical fields and form a single beam radiation pattern. The radiation characteristics of a binary horn antennas array are investigated both numerically and experimentally at 12 GHz. The results show that much higher combining efficiency can be achieved. Given a designed combining efficiency, the strict relative position requirements in each transmission unit are reduced in this scheme.

Citation:
B. Wang and K.-M. Huang, "Spatial Microwave Power Combining with Anisotropic Metamaterials," Progress In Electromagnetics Research, Vol. 114, 195-210, 2011.
doi:10.2528/PIER11010604
http://www.jpier.org/PIER/pier.php?paper=11010604

References:
1. Chang, K. and C. Sun, "Millimeter-wave power-combining techniques," IEEE Trans. Microwave Theory Tech., Vol. 31, 91-107, Feb. 1983.
doi:10.1109/TMTT.1983.1131443

2. Russell, K. J., "Microwave power combining techniques," IEEE Trans. Microwave Theory Tech., Vol. 27, 472-478, May 1979.
doi:10.1109/TMTT.1979.1129651

3. Dydyk, M., "Efficient power combining," IEEE Trans. Microwave Theory Tech., 755-762, Jul. 1980.

4. White, W. M., R. M. Gilgenbach, and M. C. Jones, "Radio frequency priming of a long-pulse relativistic magnetron," IEEE Trans. on Plasma Science, Vol. 34, No. 3, 2006.
doi:10.1109/TPS.2006.875829

5. Höft, M., J. Weinzierl, and R. Judaschke, "Broadband analysis of holographic power combining circuits," International Journal of Infrared and Millimeter Waves, Vol. 23, No. 7, Jul. 2002.

6. Magath, T. and M. Höft, "A two-dimensional quasi-optical power combining oscillator array with external injection locking," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 2, 2004.
doi:10.1109/TMTT.2003.821932

7. Batty, W., C. E. Christoffersen, and J. F. Whitaker, "Global coupled EM-electrical-thermal simulation and experimental validation for a spatial power combining MMIC array," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 12, Dec. 2002.
doi:10.1109/TMTT.2002.805142

8. Shahabadi, M. and K. Schünemann, "Millimeter-wave holographic power splitting/combining," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 12, 1997.
doi:10.1109/22.643836

9. Judaschke, R., M. Höft, and K. Schünemann, "Quasi-optical 150-GHz power combining oscillator," EEE Microwave and Wireless Components Letter, Vol. 15, No. 5, 2005.

10. Rutledge, D. B., N.-S. Cheng, R. A. York, R. M. Weikle, and M. P. DeLisio, "Failures in power-combining arrays," IEEE Trans. Microwave Theory Tech., Vol. 47, 1077-1082, 1999.
doi:10.1109/22.775439

11. Schamiloglu, E., "High power microwave sources and applications," IEEE Trans. Microwave Theory Tech., 2004.

12. Levine, J. S., N. Aiello, J. Benford, and B. Harteneck, "Design and operation of a module of phase-locked relativistic magnetrons," J. Appl. Phys., Vol. 70, No. 5, Sep. 1991.
doi:10.1063/1.349347

13. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekh1, Vol. 10, No. 4, 509-514, Jan.-Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699

14. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 6, 77-79, 2001.
doi:10.1126/science.1058847

15. Huangfu, J., L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of ω-like metallic patterns," Appl. Phys. Lett., Vol. 84, No. 9, 1537-1539, Mar. 2004.
doi:10.1063/1.1655673

16. Ran, L.-X., H.-F. Jiang Tao, H. Chen, X.-M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-hand metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502

17. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Leters, Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966

18. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

19. Cheng, X., H. Chen, X.-M. Zhang, B. Zhang, and B.-I. Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.
doi:10.2528/PIER09112002

20. Cheng, Q., W. X. Jiang, and T.-J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2009.
doi:10.2528/PIER09060705

21. Starr, A. F. and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 2006.

22. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902

23. Wu, Q., P. Pan, F.-Y. Meng, L.-W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A, Vol. 87, 151-156, 2007.
doi:10.1007/s00339-006-3820-9

24. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

25. Hrabar, S., D. Bonefacic, and D. Muha, "Numerical and experimental investigation of horn antenna with embedded ENZ metamaterial lens," Applied Electromagnetics and Communications, 24-26, Sep. 2007.

26. Alù, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, No. 15, 2007.

27. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E, Vol. 70, 2004.

28. Yu, Y., L. F. Shen, L. X. Ran, T. Jiang, and J. T. Huangfu, "Directive emission based on anisotropic metamaterials," Phys. Rev. A, Vol. 77, 2008.

29. Wu, Q., P. Pan, F. Y. L. Meng, W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Appl. Phys. A, Vol. 87, 151-156, 2007.
doi:10.1007/s00339-006-3820-9

30. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.1163/156939309788355289

31. Wang, B. and K. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.
doi:10.2528/PIER10060103

32. Weng, Z. B., X. M. Wang, Y. Song, Y. C. Jiao, and F. S. Zhang, "A directive patch antenna with arbitrary ring aperture lattice metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1283-1291, 2009.


© Copyright 2014 EMW Publishing. All Rights Reserved