PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 115 > pp. 95-112

EFFECTS OF ANTENNAS AND PROPAGATION CHANNELS ON SYNCHRONIZATION PERFORMANCE OF A PULSE-BASED ULTRA-WIDEBAND RADIO SYSTEM

By Z. Chen and Y.-P. Zhang

Full Article PDF (758 KB)

Abstract:
Synchronization performance of a pulse-based ultra-wideband (UWB) system is investigated by taking into account of distortions caused by transmitter and receiver antennas and wireless propagation channels in different environments. The synchronization scheme under consideration can be achieved in two steps: a slide correlator and a phase-locked loop (PLL)-like fine tuning loop. Effects of the non-idealities are evaluated by analyzing the distortion of the received UWB pulse and subsequently the synchronization performance of the pulse-based UWB system. It is found that generally a smaller step is required for the sliding correlator due to distortions introduced by the antennas and channels. However, the fine tuning loop can always be stabilized by adjusting the loop parameters. Therefore, synchronization can always be achieved.

Citation:
Z. Chen and Y.-P. Zhang, "Effects of Antennas and Propagation Channels on Synchronization Performance of a Pulse-Based Ultra-Wideband Radio System," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011.
doi:10.2528/PIER11011503
http://www.jpier.org/PIER/pier.php?paper=11011503

References:
1. Win, M. Z. and R. A. Scholtz, "Impulse radio: How it works," IEEE Commun. Lett., Vol. 2, No. 2, 36-38, Feb. 1998.
doi:10.1109/4234.660796

2. FCC, "In the matter of revision of Part 15 of the commission's rules regarding ultra-wideband transmissions systems," Federal Commun. Commission First Report and Order, 02-48, Apr. 2002.

3. Cramer, R. J., R. A. Scholtz, and M. Z. Win, "Evaluation of an ultra-wideband propagation channel," IEEE Trans. Antennas Propag., Vol. 50, No. 5, 561-570, May 2002.
doi:10.1109/TAP.2002.1011221

4. Sun, M. and Y. P. Zhang, "Performance of inter-chip RF-interconnect using CPW, capacitive coupler, and UWB transceiver," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 9, 2650-2655, Sep. 005.
doi:10.1109/TMTT.2005.854213

5. Lee, J. L. and R. A. Scholtz, "Ranging in a dense multipath environment suing an UWB radio link," IEEE J. Sel. Areas Commun., Vol. 20, No. 9, 1677-1683, Dec. 002.
doi:10.1109/JSAC.2002.805060

6. Terada, T., S. Yoshizumi, M. Muqsith, Y. Sanada, and T. Kuroda, "A CMOS ultra-wideband impulse radio transceiver for 1-mb/s data communications and ±2:5-cm range finding," IEEE J. Solid-State Circuits, Vol. 41, No. 4, 891-898, Apr. 006.
doi:10.1109/JSSC.2006.870760

7. Lee, F. S. and A. P. Chandrakasan, "A 2.5 nJ/bit 0.65V pulsed UWB receiver in 90nm CMOS," IEEE J. Solid-State Circuits, Vol. 42, No. 12, 2851-2859, Dec. 2007.
doi:10.1109/JSSC.2007.908723

8. Rychaert, J., M. Verhelst, M. Badaroglu, S. D'Amico, V. De Heyn, C. Desset, P. Nuzzo, B. Van Poucke, P. Wambacq, A. Baschirotto, W. Dahaene, and G. Van der Plas, "A CMOS ultra-wideband receiver for low data-rate communication," IEEE J. Solid-State Circuits, Vol. 42, No. 11, 2515-2527, Nov. 2007.
doi:10.1109/JSSC.2007.907195

9. Chandrakasan, A. P., et al., "Low-power impulse UWB architectures and circuits," Proceedings of the IEEE, Vol. 97, No. 2, 332-352, Feb. 2009.
doi:10.1109/JPROC.2008.2008787

10. Chen, J. and Z. Zhou, "The overview of synchronization in DS-UWB," Proc. IEEE International Symp. on Communications and Information Technology, Vol. 2, 983-986, Oct. 2005.

11. Bing, H., X. Hou, X. Yang, T. Yang, and C. Li, "A ``two-step'' synchronous sliding method of sub-nanosecond pulses for ultra-wideband (UWB) radio," Proc. IEEE International Conf. on Communications, Circuits and Systems and West Sino Expositions, Vol. 1, 142-145, Jun. 2002.

12. Deparis, N., C. Loyez, M. Fryziel, A. Boe, N. Rolland, and P. A. Rolland, "Transposition of a base band ultra wide band width impulse radio signal at 60 GHz for high data rates multiple access indoor communication systems," Proc. IEEE 34th European Microwave Conf., Vol. 1, 105-108, Oct. 2004.

13. Deparis, N., A. Boe, C. Loyez, N. Rolland, and P.-A. Rolland, "Receiver and synchronization for UWB impulse radio signals," Proc. IEEE MTT-S International Microwave Symp. Digest, 1414-1417, Jun. 2006.
doi:10.1109/MWSYM.2006.249534

14. Tchikawa, S. and S. Sumi, "A novel delay locked loop for UWB-IR," Proc. IEEE International Workshop on Ultra Wideband Systems Joint with Conf. on Ultrawideband Systems and Technologies, 273-277, May 2004.
doi:10.1109/UWBST.2004.1320978

15. Zhang, W., H. Shen, Z. Bai, and K. S. Kwak, "Design of delay-locked loop (DLL) with low jitter and high lose lock time in UWB-IR system," Proc. IEEE Asia-Pacific Conf. on Commun., Vol. 1, No. 5, Aug. 2006.

16. The development of UWB Gaussian monocycle pulse synchronization circuit based on 0.18-μm CMOS technology, [Online]. Available: http://www.rcis.hiroshima-u.ac.jp/21coe/pdf/4th WS/poster20-p72.pdf.

17. Chen, Z. M. and Y. P. Zhang, "A modified synchronization scheme for impulse-based UWB," International Conference on Information, Communications, and Signal Processing, 1-5, Dec. 2007.

18. Sibille, A., About the role of antennas in UWB impulse radio, The 9th Management Committee Meeting of COST Action 273, COST273 TD (04), Athens, OH, Greece, Jan. 2004.

19. Ma, T. G. and S. K. Jeng, "Planar miniature tapered-slot-fed annular slot antennas for ultrawide-band radios," IEEE Trans. Antenna Propag., Vol. 53, No. 3, 1194-1202, Mar. 2005.
doi:10.1109/TAP.2004.842648

20. Li, Z. Q., C. L. Ruan, and L. Peng, "Design and analysis of palanar antenna with dual WLAN Band-notched for integrated bluetooth and UWB applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1817-1828, 2010.

21. Kim, H., D. Park, and Y. Joo, "All-digital low-power CMOS pulse generator for UWB system," Electron. Lett., Vol. 40, No. 24, 1534-1535, Nov. 2004.
doi:10.1049/el:20046923

22. Xie, H., X. Wang, A. Wang, B. Qin, H. Chen, Y. Zhou, and B. Zhao, "A varying pulse width second order derivative Gaussian pulse generator for UWB transceiver in CMOS," IEEE ISCAS 2007, 2794-2797, May 2007.

23. Win, M. Z. and R. A. Scholtz, "Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple access communications," IEEE Trans. Commun., Vol. 48, No. 4, 679-691, Apr. 2000.
doi:10.1109/26.843135

24. Gardner, F. M., Phaselock Techniques, 3rd Ed., Wiley, Jul. 2005.

25. Abramovitch, D., "Phase-locked loops: A control centric tutorial," Proc. IEEE American Control Conf., Vol. 1, 1-15, 2002.

26. Razavi, B., "Design of monolithic phase-locked loop and clock recovery circuits --- A tutorial," Monolithic Phase-locked Loops and Clock Recovery Circuits: Theory and Design, IEEE Press, Piscataway, NJ, 1996.

27. Chen, Y. and Y. P. Zhang, "Integration of ultra-wideband slot antenna on LTCC substrate," Electron. Lett., Vol. 40, No. 11, 645-646, May 2004.
doi:10.1049/el:20040489

28. Song, H. W., J. N. Lee, J. K. Park, and H. S. Lee, "Design of ultra wideband monopole antenna using parasitic open loops," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 561-570, 2009.
doi:10.1163/156939309788019778

29. Faraji, D. and M. N. Azarmanesh, "A novel modified head-shaped monopole antenna for UWB applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1291-1301, 2009.
doi:10.1163/156939309789108552

30. Faraji, D. and M. N. Azarmanesh, "A novel modified head-shaped monopole antenna for UWB applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1291-1301, 2009.
doi:10.1163/156939309789108552

30. Wang, J. J., Y. Z. Yin, and X. W. Dai, "A novel fractal triangular monopole antenna with notched and truncated ground for UWB application," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1313-1321, 2009.
doi:10.1163/156939309789108561

31. Marynowski, W. and J. Mazur, "Design of UWB coplanar antenna with reduced ground plane," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1707-1713, 2009.
doi:10.1163/156939309789566905

32. Abdollahvand, M. and G. R. Dadashzadesh, "Compact double-fed dual annular ring printed monopole antenna for UWB application," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14--15, 1969-1980, 2009.
doi:10.1163/156939309789932476

33. Yang, Y.-B., F.-S. Zhang, L. Zhang, F. Zhang, and Y.-C. Jiao, "Design of a planar monopole antenna with dual band-notched characteristics for ultra-wideband applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17--18, 2481-2489, 2009.

34. Zheng, Z.-A., Q.-X. Chu, and T.-G. Huang, "Compact ultra-wideband slot antenna with stepped slots," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1069-1078, 2010.
doi:10.1163/156939310791586016

35. Sun, M., Y. P. Zhang, and Y. L. Lu, "Miniaturization of planar monopole antenna for ultrawide-band radios," IEEE Trans. Antennas Propagat., Vol. 58, No. 7, 2420-2425, Jul. 2010.
doi:10.1109/TAP.2010.2048851

36. IEEE 802.15.SG3a, "Channel modeling sub-committee report final," IEEE P802.15-02/460r1-SG3a, Feb. 2003.

37. Zhang, Y. P. and Q. Li, "Performance of UWB impulse radio with planar monopoles over on-human-body propagation channel for wireless body aread network," IEEE Trans. Antennas Propagat., Vol. 55, No. 10, 2900-2906, Oct. 2007.
doi:10.1109/TAP.2007.905867

38. Chen, Z. M. and Y. P. Zhang, "Inter-chip wireless communication channel: Measurement, characterization, and modeling," IEEE Trans. Antennas Propagat., Vol. 55, 978-986, Mar. 2007.
doi:10.1109/TAP.2007.891861


© Copyright 2014 EMW Publishing. All Rights Reserved