PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 115 > pp. 147-157

ORGANIC-INORGANIC RF COMPOSITES WITH ENHANCED PERMITTIVITY BY NANOPARTICLE ADDITIONS

By M. Teirikangas, J. Juuti, and H. Jantunen

Full Article PDF (621 KB)

Abstract:
Organic-inorganic thermoplastic composites offer a cost-effective material choice with tuneable dielectric properties for various telecom components and applications. Typically such composites require substantial loading of inorganics to obtain a feasible level of permittivity at RF frequencies dramatically decreasing mechanical ruggedness and increasing losses. In this paper we demonstrate utilization of nanoparticle phase in BaSrTiO3-polypropylene-graft-poly (styrene-stat-divenylbenzene) composite to enhance the high frequency properties and overcome the problems associated with high filler loading. The effect of nanosize silicon, silver and Al2O3 additives with different volume fractions in complex permittivity was investigated up to 1 GHz. Significant increase in the effective permittivity of the composites with all the additives was observe, especially in the case of the nanosized silver particles where only 2 vol.% addition was able to enhance εr by 52% without increasing the dielectric losses when compared to the reference sample.

Citation:
M. Teirikangas, J. Juuti, and H. Jantunen, "Organic-Inorganic RF Composites with Enhanced Permittivity by Nanoparticle Additions," Progress In Electromagnetics Research, Vol. 115, 147-157, 2011.
doi:10.2528/PIER11022105
http://www.jpier.org/PIER/pier.php?paper=11022105

References:
1. Balazs, A. C., T. Emrick, and T. P. Russell, "Nanoparticle polymer composites: Where two small worlds meet," Science, Vol. 314, 1107-1110, 2006.
doi:10.1126/science.1130557

2. Shen, Y., Z. X. Yue, and M. Li, "Enhanced initial permeability and dielectric constant in a double-percolating Ni0.3Zn0.7Fe1.95O4-Ni-polymer composite," Adv. Func. Mat., Vol. 15, 1100-1103, 2005.
doi:10.1002/adfm.200500045

3. Dang, Z. M., Y. H. Lin, and C. W. Nan, "Novel ferroelectric polymer composite with high dielectric constants," Adv. Mat., Vol. 15, 1625-1629, 2003.
doi:10.1002/adma.200304911

4. Shen, Y., Y. H. Lin, and C. W. Nan, "High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer," Adv. Mat., Vol. 19, 1418-1422, 2007.
doi:10.1002/adma.200602097

5. Hu, T., J. Juuti, and H. Jantunen, "RF-properties of BST-PPS composites," J. Eur. Ceram. Soc., Vol. 27, 2923-2926, 2007.
doi:10.1016/j.jeurceramsoc.2006.11.027

6. Xiang, F., H. Wang, and X. Yao, "Dielectric properties of SrTiO3/POE flexible composites for microwave applications," J. Eur. Ceram. Soc., Vol. 27, 3093-3097, 2007.
doi:10.1016/j.jeurceramsoc.2006.11.034

7. Xiang, F., H. Wang, M. L. Zhang, and X. Yao, "Frequency-temperature compensation mechanism for bismuth based dielectric/PTFE microwave composites," J. Electroceram., Vol. 22, 221-226, 2009.
doi:10.1007/s10832-007-9368-z

8. Xiang, F., H.Wang, and X. Yao, "Preparation and dielectric properties of bismuth-based dielectric/PTFE microwave composite," J. Eur. Ceram. Soc., Vol. 26, 1999-2002, 2006.
doi:10.1016/j.jeurceramsoc.2005.09.048

9. Subodh, G., C. Paviathran, P. Mohanan, and M. T. Sebastian, "PTFE/Sr22Ce2Ti5O16 polymer ceramic composites for electronic packaging applications," J. Eur. Ceram. Soc., Vol. 27, 3039-3044, 2007.
doi:10.1016/j.jeurceramsoc.2006.11.049

10. Tuncer, E., E. Nettelblad, and S. M. Guba·nski, "Non-Debye dielectric relaxation in binary dielectric mixtures (50--50): Randomness and regularity in mixture topology," J. Appl. Phys., Vol. 92, 4612-4624, 2002.
doi:10.1063/1.1505975

11. Perrier, G. and A. Bergeret, "Maxwell-Wagner-Sillars relaxations in polystyrene-glass-bead composites," J. Appl. Phys., Vol. 77, 2651-2658, 1995.
doi:10.1063/1.358731

12. Lin, Y. Q., Y. J. Wu, X. M. Chen, S. P. Gu, J. Tong, and S. Guan, "Dielectric relaxation mechanisms of BiMn2O5 ceramics," J. Appl. Phys., Vol. 105, 1-5, 2009.

13. Pecharroman, C., F. Esteban-Betegon, J. F. Bartolome, S. Lopes-Esteban, and J. S. Moya, "New percolative BaTiO3-Ni composites with a high and frequency-independent dielectric constant," Adv. Mat., Vol. 13, 1541-1544, 2001.
doi:10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-X

14. Rujijanagul, G., S. Jompruan, and A. Chaipanich, "Influence of graphite particle size on electrical properties of modified PZT-polymer composites," Curr. Appl. Phys., Vol. 8, 359-362, 2008.
doi:10.1016/j.cap.2007.10.031

15. George, S., N. I. Santha, and M. T. Sebastian, "Percolation phenomenon in barium samarium titanate-silver composite," J. Phys. Chem. Solids, Vol. 70, 107-111, 2009.
doi:10.1016/j.jpcs.2008.09.015

16. Ramajo, L. A., A. A. Cristóbal, P. M. Botta, J. M. Porto López, M. M. Reboredo, and M. S. Castro, "Dielectric and magnetic response of Fe3O4/epoxy composites," Composites: Part A, Vol. 40, 388-393, 2009.
doi:10.1016/j.compositesa.2008.12.017

17. Adikary, S., H. Chan, C. Choy, B. Sundaravel, and I. Wilson, "Characterisation of proton irradiated Ba0.65Sr0.35TiO3/P(VDF-TrFE) ceramic-polymer composite," Comp. Science Tech., Vol. 62, 2161-2167, 2002.
doi:10.1016/S0266-3538(02)00149-5

18. Wu, C. C., Y. C. Chen, C. C. Su, and C.-F. Yang, "The chemical and dielectric properties of epoxy/(Ba0.8Sr0.2)(Ti0.9Zr0.1)Osub>3/sub>," Eur. Polymer., Vol. 45, 1442-1447, 2009.
doi:10.1016/j.eurpolymj.2009.02.005

19. Jylha, L. and A. Sihvola, "Equation for the effective permittivity of particle-filled composites for material design application," J. Phys. D App. Phys., Vol. 40, 2007.
doi:10.1088/0022-3727/40/16/032

20. Sa-Gong, G., A. Safari, S. J. Jang, and R. E. Newnham, "Poling flexible piezoelectric composites," Ferroelectrics Lett., Vol. 5, 131-142, 1986.
doi:10.1080/07315178608202472

21. Ryvkina, N., I. Tchmutin, J. Vilcakova, M. Pelíšková, and P. Sáha, "The deformation behavior of conductivity in composites where charge carrier transport is by tunneling: Theoretical modeling and experimental results," Synth. Mat., Vol. 148, 141-146, 2005.
doi:10.1016/j.synthmet.2004.09.028

22. Li, C., E. T. Thostenson, T. W. Chou, C. Li, and E. Thostenson, "Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites," Appl. Phys. Lett., Vol. 91, 1227-1249, 2007.

23. Todd, M. G. and F. G. Shi, "Characterizing the interphase dielectric constant of polymer composite materials: Effect of chemical coupling agents," J. Appl. Phys., Vol. 94, No. 7, 4551-4557, 2003.
doi:10.1063/1.1604961

24. Murugaraj, P., D. Mainwaring, and N. Mora-Huertas, "Dielectric enhancement in polymer-nanoparticle composites through inter-phase polarizability," J. Appl. Phys., Vol. 98, 054304, 2005.
doi:10.1063/1.2034654

25. Vaia, R. and H. Wagner, "Framework for nanocomposites," Materials Today, Vol. 7, No. 11, 32-37, 2004.
doi:10.1016/S1369-7021(04)00506-1


© Copyright 2014 EMW Publishing. All Rights Reserved