PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 116 > pp. 297-312

OPTIMUM DESIGN FOR IMPROVING MODULATING-EFFECT OF COAXIAL MAGNETIC GEAR USING RESPONSE SURFACE METHODOLOGY AND GENETIC ALGORITHM

By L. Jian, G. Xu, J. Song, H. Xue, D. Zhao, and J. Liang

Full Article PDF (499 KB)

Abstract:
Coaxial magnetic gear (CMG) is a non-contact device for torque transmission and speed variation which exhibits promising potential in several industrial applications, such as electric vehicles, wind power generation and vessel propulsion. CMG works lying on the modulating-effect aroused by the ferromagnetic segments. This paper investigates the optimum design for improving the modulating-effect. Firstly, the operating principle and the modulating-effect is analyzed by using 1-D field model, which demonstrates that the modulatingeffect is essential for the torque transmission capacity of CMGs, and the shape of the ferromagnetic segments have impact on the modulatingeffect. Secondly, the fitted model of the relationship between the maximum pull-out torque and the shape factors including radial height, outer-edge width-angle and inner-edge width-angle is built up by using surface response methodology. Moreover, FEM is engaged to evaluate its accuracy. Thirdly, the optimum shape of the ferromagnetic segment is obtained by using genetical algorithm.

Citation:
L. Jian, G. Xu, J. Song, H. Xue, D. Zhao, and J. Liang, "Optimum Design for Improving Modulating-Effect of Coaxial Magnetic Gear Using Response Surface Methodology and Genetic Algorithm," Progress In Electromagnetics Research, Vol. 116, 297-312, 2011.
doi:10.2528/PIER11032316
http://www.jpier.org/PIER/pier.php?paper=11032316

References:
1. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Trans. Magn., Vol. 37, No. 4, 2844-2846, 2001.
doi:10.1109/20.951324

2. Atallah, K., S. Calverley, and D. Howe, "Design, analysis and realization of a high-performance magnetic gear," IEE Proc. Electric Power Appl., Vol. 151, No. 2, 135-143, 2004.
doi:10.1049/ip-epa:20040224

3. Rasmussen, P., T. Andersen, F. Jorgensen, and O. Nielsen, "Development of a high-performance magnetic gear," IEEE Trans. Ind. Appl., Vol. 41, No. 3, 764-770, 2005.
doi:10.1109/TIA.2005.847319

4. Jian, L., K. T. Chau, Y. Gong, J. Jiang, C. Yu, and W. Li, "Comparison of coaxial magnetic gears with different topologies," IEEE Trans. Magn., Vol. 45, No. 10, 4526-4529, 2009.
doi:10.1109/TMAG.2009.2021662

5. Jian, L. and K. T. Chau, "A coaxial magnetic gear with halbach permanent-magnet arrays," IEEE Trans. Energy Conversion, Vol. 25, No. 2, 319-328, 2010.
doi:10.1109/TEC.2010.2046997

6. Liu, X., K. T. Chau, J. Jiang, and C. Yu, "Design and analysis of interior-magnet outer-rotor concentric magnetic gears," Journal of Applied Physics, Vol. 105, No. 7, 1-3, 2009.

7. Jian, L. and K.-T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Eletromagnetics Research, Vol. 92, 1-16, 2009.
doi:10.2528/PIER09032301

8. Lubin, T., S. Mezani, and A. Rezzoug, "Analytical computation of the magnetic field distribution in a magnetic gear," IEEE Trans. Magn., Vol. 46, No. 7, 2611-2621, 2010.
doi:10.1109/TMAG.2010.2044187

9. Jian, L., K. T. Chau, and J. Jiang, "A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation," IEEE Trans. Ind. Appl., Vol. 45, No. 3, 954-962, 2009.
doi:10.1109/TIA.2009.2018974

10. Jian, L., G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magneticgear-integrated wind power generator using time-stepping finite element method," Progress In Eletromagnetics Research, Vol. 113, 351-367, 2011.

11. Jian, L. and K.-T. Chau, "Design and analysis of a magneticgeared electronic-continuously variable transmission system using finite element method ," Progress In Eletromagnetics Research, Vol. 107, 47-61, 2010.
doi:10.2528/PIER10062806

12. Frank, N. and H. Toliyat, "Gearing ratios of a magnetic gear for marine applications," IEEE Electric Ship Technologies Symposium, ESTS 2009, 477-481, 2009.
doi:10.1109/ESTS.2009.4906554

13. Hong, D., B. Woo, D. Koo, and D. Kang, "Optimum design of transverse °ux linear motor for weight reduction and improvement thrust force using response surface methodology," IEEE Trans. Magn., Vol. 44, No. 11, 4317-4320, 2008.
doi:10.1109/TMAG.2008.2002474

14. Choi, Y., H. Kim, and J. Lee, "Optimum design criteria or maximum torque density and minimum torque ripple of SynRM according to the rated wattage using response surface methodology," IEEE Trans. Magn., Vol. 44, No. 11, 4135-4138, 2008.
doi:10.1109/TMAG.2008.2002518

15. Hasanien, H., A. Abd-Rabou, and S. Sakr, "Design optimization of transverse flux linear motor for weight reduction and performance improvement using response surface methodology and genetic algorithms," IEEE Trans. Energy Conversion, Vol. 25, No. 3, 598-605, 2010.
doi:10.1109/TEC.2010.2050591

16. Jian, L., K. T. Chau, W. Li, and J. Li, "A novel coaxial magnetic gear using bulk HTS for industrial applications," IEEE Trans. Appl. Superconduc., Vol. 20, No. 3, 981-984, 2010.
doi:10.1109/TASC.2010.2040609

17. Faiz, J. and B. M. Ebrahimi, "Mixed fault diagnosis in three-phase squirrel-cage induction motor using analysis of air-gap magnetic field," Progress In Eletromagnetics Research, Vol. 64, 239-255, 2006.
doi:10.2528/PIER06080201

18. Vaseghi, B., N. Takorabet, and F. Meibody-Tabar, "Transient finite element analysis of induction machines with stator winding turn fault," Progress In Eletromagnetics Research, Vol. 95, 1-18, 2009.
doi:10.2528/PIER09052004

19. Faiz, J., B. M. Ebrahimi, and M. B. B. Sharifian, "Time stepping fite element analysis of broken bars fault in a three-phase squirrel-cage induction motor," Progress In Eletromagnetics Research, Vol. 68, 53-70, 2007.
doi:10.2528/PIER06080903

20. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network ," Progress In Eletromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303

21. Lecointe, J.-P., B. Cassoret, and J. F. Brudny, "Distinction of toothing and saturation effects on magnetic noise of induction motors," Progress In Eletromagnetics Research, Vol. 112, 125-137, 2011.

22. Li, J., Z. Liu, M. Jabbar, and X. Gao, "Design optimization for cogging torque minimization using response surface methodology," IEEE Trans. Magn., Vol. 40, No. 2, 1176-1179, 2004.
doi:10.1109/TMAG.2004.824809

23. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring sierpinski carpet arrays optimized by genetic algorithms," Progress In Eletromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110

24. Reza, A. W., M. S. Sarker, and K. Dimyati, "A novel integrated mathematical approach of ray-tracing and genetic algorithm for optimizing indoor wireless coverage," Progress In Eletromagnetics Research, Vol. 110, 147-162, 2010.
doi:10.2528/PIER10091701

25. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-effincy wide-band multimodal square horns for discrete lenses," Progress In Eletromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806


© Copyright 2014 EMW Publishing. All Rights Reserved