Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 117 > pp. 1-18


By J. A. Morente, E. A. Navarro, J. A. Porti, A. Salinas, J. A. Morente-Molinera, S. Toledo-Redondo, W. J. O'Connor, B. P. Besser, H. I. M. Lichtenegger, J. F. Fornieles, and A. Méndez

Full Article PDF (401 KB)

The sequence of Schumann resonances is unique for each celestial body with an ionosphere, since these resonances are determined by the dimensions of the planet/satellite and the corresponding atmospheric conductivity profile. Detecting these frequencies in an atmosphere is a clear proof of electrical activity, since it implies the existence of an electromagnetic energy source, which is essential for their creation and maintenance. In this paper, an analysis procedure for extracting weak resonances from the responses of electromagnetic systems excited by electric discharges is shown. The procedure, based on analysis of the late-time system response, is first checked using an analytical function and later applied to the vertical electric field generated by the computational simulation of Earth's atmosphere using the TLM (Transmission Line Matrix) method in order to extract the weak Schumann resonances contained in this electric field component.

J. A. Morente, E. A. Navarro, J. A. Porti, A. Salinas, J. A. Morente-Molinera, S. Toledo-Redondo, W. J. O'Connor, B. P. Besser, H. I. M. Lichtenegger, J. F. Fornieles, and A. Méndez, "A Late-Time Analysis Procedure for Extracting Weak Resonances. Application to the Schumann Resonances Obtained with the TLM Method," Progress In Electromagnetics Research, Vol. 117, 1-18, 2011.

1. Tinsley, B. A. and L. Zhou, "Initial results of a global circuit model with variable stratospheric and tropospheric aerosols," J. Geophys. Res., Vol. 111, No. D16205, 1-23, 2006.

2. Makino, M. and T. Ogawa, "Quantitative estimation of global circuit," J. Geophys. Res., Vol. 90, No. D4, 5961-5966, 1985.

3. Sentman, D. D., "Schumann resonances," Handbook of Atmo-spheric Electrodynamics, Vol. 1, 267-295, 1995.

4. Morente, J. A., J. A. PortÍ, A. Salinas, G. J. Molina-Cuberos, H. Lichtenegger, B. P. Besser, and K. Schwingenschuh, "Do Schumann resonance frequencies depend on altitude?," J. Geophys. Res., Vol. 109, No. 05306, 1-6, 2004.

5. Christian, H. J., et al., "Global frequency and distribution of lightning as observed from space by the optical transient detector," J. Geophys. Res., Vol. 108, No. 1, 1-15, 2003.

6. Barr, R., D. L. Jones, and C. J. Rodger, "ELF and VLF radio waves," J. Atmos. Sol. Terr. Phys., Vol. 62, No. 17--18, 1689-1718, 2000.

7. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, Inc., Hoboken, N.J., 1989.

8. Poeverlein, H., "Resonance of the space between Earth and ionosphere," J. Res. NBS (Radio Prop.), Vol. 65, No. 5, 465-473, 1961.

9. Bliokh, P. V., Y. P. Galyuk, E. M. HÄunninen, A. P. Nikolaenko, and L. M. Rabinovich, "Resonance effects in the Earth-ionosphere cavity," Radiophys. Quant. Electron., Vol. 20, No. 4, 339-345, 1977.

10. Nikolaenko, A. P. and L. M. Rabinovich, "Possible global electromagnetic resonances on the planets of the solar system," Cosmic Res., Vol. 20, No. 1, 67-71, 1982.

11. Sentman, D. D., "Schumann resonance spectra in a two-scale-height Earth-ionosphere cavity," J. Geophys. Res., Vol. 101, No. 5, 9479-9487, 1996.

12. Morente, J. A., J. A. Portí, B. P. Besser, A. Salinas, H. I. M. Lichtenegger, E. A. Navarro, and G. J. Molina-Cuberos, "A numerical study of atmospheric signals in the Earth-ionosphere electromagnetic cavity with the transmission line matrix method," J. Geophys. Res., Vol. 111, No. 10305, 1-13, 2006.

13. Schumann, W. O., "Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist," Z. Naturforsch. A, Vol. 7, 149-154, 1952.

14. Besser, B. P., "Synopsis of the historical development of Schumann resonances," Radio Sci., Vol. 42, No. RS2S02, 1-20, 2007.

15. Wait, J. R., Geo-electromagnetism, Academic Press, London, 1982.

16. Budden, K. G., The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere, Cambridge Univ. Press, New York, 1985.

17. Nickolaenko, A. P. and M. Hayakawa, Resonances in the Earthionosphere Cavity, Springer, New York, 2002.

18. Balser, M. and C. A. Wagner, "Observations of Earth-ionosphere cavity resonances," Nature, Vol. 188, No. 4751, 638-641, 1960.

19. Williams, E. R., "The Schumann resonance: A global tropical thermometer," Science, Vol. 256, No. 5060, 1184-1187, 1992.

20. Sentman, D. D., "Approximate Schumann resonance parameters for a two-scale-height ionosphere," J. Atmos. Sol. Terr. Phys., Vol. 22, No. 1, 35-46, 1990.

21. Rycroft, M. J., A. Odzimek, N. F. Arnold, M. FÄullekrug, A. Kulak, and T. Neuber, "New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites," J. Atmos. Sol. Terr. Phys., Vol. 69, 2485-2509, 2007.

22. Cummer, S. A., "Modeling electromagnetic propagation in the Earth-ionosphere waveguide," IEEE Trans. Antennas and Propag., Vol. 48, No. 9, 1420-1429, 2000.

23. Hayakawa, M. and T. Otsuyama, "FDTD analysis of ELF wave propagation in inhomogencous subionospheric waveguide models," Appl. Computational Electromagnetics Soc. J., Vol. 17, No. 3, 239-244, 2002.

24. Otsuyama, T., D. Sakuma, and M. Hayakawa, "FTDT analysis of ELF wave propagation and Schumann resonanace for a subionopheric waveguide model," Radio Sci., Vol. 38, No. 6, 1103, 2003.

25. Yang, S., Y. Chen, and Z.-P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.

26. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.

27. Christopoulos, C., "The Transmission-line Modeling Method: TLM," IEEE/OUP Press, 1995.

28. Schlegel, K. and M. Füllekrug, "Schumann resonance parameter changes during high-energy particle precipitation," J. Geophys. Res., Vol. 104, No. 5, 10111-10118, 1999.

29. Plonus, M. A., Applied Electromagnetics, McGraw-Hill, New York, 1978.

30. De Cogan, D., S. H. Pulko, and W. J. O'Connor, "Transmission Line Matrix in Computational Mechanics," CRC Press, 2005.

31. Johns, P. B., "A symmetrical condensed node for the TLM method," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 4, 370-377, 1987.

32. Morente, J. A., G. J. Molina-Cuberos, J. A. Portí, B. P. Besser, A. Salinas, K. Schwingenschuch, and H. Lichtenegger, "A numerical simulation of Earth's electromagnetic cavity with the transmission line matrix method: Schumann resonances," J. Geophys. Res., Vol. 108, No. 5, 1-11, 2003.

33. Sukhorukov, A. I., "Lightning transient fields in the atmosphere-low ionosphere," J. Atmos. Terr. Phys., Vol. 58, No. 15, 1711-1720, 1996.

34. Ogawa, T., "Lightning currents," Handbook of Atmospheric Electrodynamics, Vol. 1, 93-136, 1995.

35. Gómez, R. and J. A. Morente, "Analysis of electric quadrupole radiation in the time domain: Application to large current radiators," Int. J. Electron., Vol. 58, No. 6, 921-931, 1985.

36. Sentman, D. D., "Magnetic elliptical polarization of Schumann resonances," Radio Science, Vol. 22, No. 4, 595-606, 1987.

37. Mushtak, V. C. and E. Williams, "ELF propagation parameters for uniform models of the Earth-ionosphere waveguide," J. Atmos. Sol. Terr. Phys., Vol. 64, No. 18, 1898-2001, 2002.

. Gharsallah, N., E. J. Rothwell, K. Chen, and D. P. Nyquist, "Identi¯cation of the natural resonance frequencies of a conducting sphere from a measured transient response," IEEE Trans. Antennas and Propag., Vol. 38, No. 1, 141-143, 1990.

© Copyright 2014 EMW Publishing. All Rights Reserved