PIER | |
Progress In Electromagnetics Research | ISSN: 1070-4698, E-ISSN: 1559-8985 |
Home > Vol. 118 > pp. 37-56
TRANSPORT AND ELECTRONIC PROPERTIES OF THE GaAs ALD-FETBy O. Oubram, L. M. Gaggero-Sager, O. Navarro, and M. OuadouAbstract: According to the scaling-down theory, the ALD-FET (Atomic Layer Doping-Field Effect Transistor) structure has attracted a lot of attention in view of its uses for developing devices with very short channels and for achieving very-high-speed operation. Therefore, there is a strong need to obtain an accurate understanding of carrier transport (mobility and conductivity) in such devices. In this work, we report the carrier transport based on the electronic structure of devices. Our results include analytical expressions of both mobility and conductivity. Our analytical expressions for the mobility and conductivity allow us to analyze transport in ALD-FET. We report regions where this device operates in digital and analogue mode. These regions are delimited in terms of intrinsic and extrinsic parameters of the system. The width of the Ohmic region as well as the NDR (Negative Differential Resistance) properties of the system are also characterized.
Citation:
References:
2. Schubert, E. F., A. Fischer, and K. Ploog, "The delta-doped field-effect transistor (δ-FET)," IEEE Trans. Electron Devices, Vol. 33, 625-632, 1986. 3. Chakhnakia, Z. D., L. V. Khvedelidze, N. P. Khuchua, R. G. Melkadze, G. Peradze, and T. B. Sakharova, "AlGaAs-GaAs heterostructure δ-doped field-effect transistor (δ-FET)," Proc. SPIE., Vol. 5401, 354-361, 2004. 4. Lin, Y. M., S. L. Wu, S. J. Chang, S. Koh, and Y. Shiraki, "SiGe heterostructure field-effect transistor using V-shaped confining potential well," IEEE Electron Device Lett., Vol. 24, No. 2, 69-71, 2003. 5. Aleksov, A., A. Denisenko, M. Kunze, A. Vescan, A. Bergmaier, G. Dollinger, W. Ebert, and E. Kohn, "Diamond diodes and transistors," Semicond. Sci. Technol., Vol. 18, 59-66, 2003. 6. Abid, Z., A. Gopinath, B. Meskoob, and S. Prasad, "GaAs MESFETs with channel-doping variations," Solid-State Electron., Vol. 34, No. 12, 1427-1432, 1991. 7. Ueda, K., M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J. Twitchen, G. A. Scarsbrook, and S. E. Coe, "Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz," IEEE Electron Device Lett., Vol. 27, No. 7, 2006. 8. Wort, C. J. H. and R. S. Balmer, "Diamond as an electronic material," Mater. Today, Vol. 11, No. 1-2, 22-28, 2008. 9. Balmer, R. S., I. Friel, S. M. Woollard, C. J. H. Wort, G. A. Scarsbrook, S. E. Coe, H. El-Hajj, A. Kaiser, A. Denisenko, E. Kohn, and J. Isber, "Unlocking diamonds potential as an electronic material," Phil. Trans. R. Soc. A, Vol. 366, 251-265, 2008. 10. El-Hajj, H., A. Denisenko, A. Kaiser, R. S. Balmer, and E. Kohn, "Diamond MISFET based on boron delta-doped channel," Diamond Relat. Mater., Vol. 17, 1259-1263, 2008. 11. Nakajima, S., N. Kuwata, N. Shiga, K. Otobe, K. Matsuzaki, T. Sekiguchi, and H. Hayashi, "Characterization of double pulse-doped channel GaAs MESFETs," IEEE Trans. Electron Devices, Vol. 14, No. 3, 146-148, 1993. 12. Balmer, R. S., J. R. Brandon, S. L. Clewes, H. K. Dhillon, J. M. Dodson, I. Friel, P. N. Inglis, T. D. Madgwick, M. L. Markham, T. P. Mollart, N. Perkins, G. A. Scarsbrook, D. J. Twitchen, A. J. Whitehead, J. J. Wilman, and S. M. Woollard, "Chemical vapour deposition synthetic diamond: materials, technology and applications," J. Phys.: Condens. Matter., Vol. 21, No. 36, 364221, 2009. 13. Yamaguchi, K., Y. Shiraki, Y. Katayama, and Y. Murayamn, "A new short channel MOSFET with an atomic-layer-doped impurity-profile (ALD-MOSFET)," Jpn. J. Appl. Phys., Vol. 22, 267-270, Supplement 22-1, 1983.
14. Lien, C., Y. Huang, H. Chien, and W. Wang, "Charge control model of the double delta-doped quantum-well field-effect transistor," IEEE Trans. Electron Devices, Vol. 41, No. 8, 1351-1356, 1994. 15. Miyao, M., K. Nakagawa, H. Nakahara, Y. Kiyota, and M. Kondo, "Recent progress of heterostructure technologies for novel silicon devices," Appl. Surf. Sci., Vol. 102, No. 2, 360-371, 1996. 16. Martínez-Orozco, J. C., I. Rodríguez-Vargas, C. A. Duque, M. E. Mora-Ramos, and L. M. Gaggero-Sager, "Study of the electronic properties of GaAs-based atomic layer doped field effect transistor (ALD-FET) under the influence of hydrostatic pressure," Phys. Status Solidi B, Vol. 246, No. 3, 581-585, 2009. 17. Aleksov, A., M. Kubovic, N. Kaeb, U. Spitzberg, A. Bergmaier, G. Dollinger, T. Bauer, M. Schreck, B. Stritzker, and E. Kohn, "Diamond field effect transistors concepts and challenges," Diamond Relat. Mater., Vol. 12, No. 3-7, 391-398, 2003. 18. Zeindl, H. P., B. Bullemer, I. Eisele, and G. Tempel, "Delta-doped MESFET with MBE-grown Si," J. Electrochem. Soc., Vol. 136, No. 4, 1129-1131, 1989. 19. Nakagawa, K., A. A. van Gorkum, and Y. Shiraki, "Atomic layer doped field effect transistor fabricated using Si molecular beam epitaxy," Appl. Phys. Lett., Vol. 54, No. 19, 1869-1871, 1989. 20. Oubram, O., L. M. Gaggero-Sager, and D. S. Díaz-Guerrero, "Relative mobility and relative conductivity in ALD-FET (Atomic layer doped-field effect transistor) in GaAs," PIERS Proceeding, 1186-1190, Beijing, China, Mar. 23-27, 2009.
21. Mora-Ramos, M. E. and L. M. Gaggero-Sager, "A simple model for atomic layer doped field-errect transistor (ALD-FET) electronic states," Rev. Mex. Fís., Vol. 44, No. 3, 165-167, 1998.
22. Oubram, O. and L. M. Gaggero-Sager, "Transport properties of delta-doped field effect transistor," Progress In Electromagnetics Research Letters, Vol. 2, 81-87, 2008. 23. Gaggero-Sager, L. M. and R. Perez-Alvarez, "A simple model for delta doped field effect transistor electronic states," J. Appl. Phys., Vol. 78, No. 7, 4566-4569, 1995. 24. Oubram, O., L. M. Gaggero-Sager, A. Bassam, and G. A. Luna Acosta, "Transport and electronic properties of two dimensional electron gas in delta-migfet in GaAs," Progress In Electromagnetics Research, Vol. 110, 59-80, 2010. 25. Ozturk, E., "Effect of magnetic field on a p-Type δ-doped GaAs layer," Chinese Phys. Lett., Vol. 27-2010. 26. Ozturk, E., "Optical intersubband transitions in double Si δ-doped GaAs under an applied magnetic field," Superlattices Microstruct., Vol. 46, No. 5, 752-759, 2009. 27. Ozturk, E., M. K. Bahar, and I. Sokmen, "Subband structure of p-type δ-doped GaAs as dependent on the acceptor concentration and the layer thickness," Eur. Phys. J. Appl. Phys., Vol. 41, 195-200, 2008. 28. El-Hajj, H., A. Denisenko, A. Bergmaier, G. Dollinger, M. Kubovic, and E. Kohn, "Characteristics of boron δ-doped diamond for electronic applications," Diamond Relat. Mater., Vol. 17, 409-414, 2008. 29. Chen, X. and B. Nabet, "A closed-form expression to analyze electronic properties in delta-doped heterostructures," Solid-State Electron., Vol. 48, 2321-2327, 2004. 30. Rhoderick, E. H. and R. H. Williams, Metal-semiconductor Contacts, Clarendon Press, Oxford, 1988.
31. Ioriatti, L., "Thomas-Fermi theory of δ-doped semiconductor structures: Exact analytical results in the high-density limit," Phys. Rev. B, Vol. 41, 8340-8344, 1990. 32. Gaggero-Sager, L. M., R. Mora-Ramos, and D. A. Contreras-Solorio, "Thomas-Fermi approximation in p-type δ-doped quantum wells of GaAs and Si," Phys. Rev. B, Vol. 57, No. 11, 6286-6289, 1998. 33. Rodríguez-Vargas, I., L. M. Gaggero-Sager, and V. R. Velasco, "Thomas-Fermi-Dirac theory of the hole gas of a double p-type δ-doped GaAs quantum wells," Surf. Sci., Vol. 537, No. 1-3, 75-83, 2003. 34. Wu, C. J. and Z. H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010. 35. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009. 36. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010. 37. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010. 38. Wu, C.-J., Y.-N. Rau, and W.-H. Han, "Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 100, 27-36, 2010. 39. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010. 40. Wang, Y. H., "Interband resonant tunneling diode in δ-doped GaAs," Appl. Phys. Lett., Vol. 57, No. 15, 1546-1547, 1990. 41. Sardela, Jr., M. R., H. H. Radamson, L. Hultman, and G. V. Hansson, "Growth, characterization and device fabrication of Boron delta-doped structures by Si-molecular beam epitaxy," Jpn. J. Appl., Vol. 33, 2279-2281, 1994.
42. Li, S. M., W. M. Zheng, A. L. Wu, W. Y. Cong, J. Liu, N. N. Chu, and Y. X. Song, "Terahertz electroluminescence from Be δ-doped GaAs/AlAs quantum well," Appl. Phys. Lett., Vol. 97, No. 2, 023507-1-023507-2, 2010. 43. Weng, T. Y., J. H. Tsai, and D. F. Guo, "An optoelectronic switch with multiple operation states," IEEE, Optoelectronic and Microelectronic Materials and Devices, Conference, 90-93, 2006. 44. Geraldo, J. M., W. N. Rodrigues, G. Medeiros-Ribeiro, and A. G. de Oliveira, "The effect of the planar doping on the electrical transport properties at the Al:n-GaAs (100) interface: Ultrahigh effective doping," J. Appl. Phys., Vol. 73, No. 2, 820-823, 1993. |