PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 118 > pp. 223-241

A HIGHER ORDER ANALYSIS OF A CLASS OF INHOMOGENEOUSLY FILLED CONDUCTING WAVEGUIDES

By E. Khodapanah and S. Nikmehr

Full Article PDF (523 KB)

Abstract:
A higher order analysis is applied to solve the problem of a class of inhomogeneously-filled conducting waveguides. This includes an arbitrary but smooth hollow conducting waveguides and waveguides filled with layered inhomogeneous materials. The method employs a set of spline-harmonic basis functions and leads to one-dimensional integrals for system matrix elements. This fact along with the higher order nature of the basis functions provides an accurate method for the analysis of the aforementioned waveguides. The accuracy and the convergence behavior of the method are studied through several numerical examples and the results are compared with the exact solutions and with the results of Ansoft HFSS simulator to establish the validity of the proposed method.

Citation:
E. Khodapanah and S. Nikmehr, "A Higher Order Analysis of a Class of Inhomogeneously Filled Conducting Waveguides," Progress In Electromagnetics Research, Vol. 118, 223-241, 2011.
doi:10.2528/PIER11040902
http://www.jpier.org/PIER/pier.php?paper=11040902

References:
1. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
doi:10.2528/PIER09031606

2. Hasar, U. C., "Thickness-independent complex permittivity determination of partially filled thin dielectric materials into rectangular waveguides," Progress In Electromagnetics Research, Vol. 93, 189-203, 2009.
doi:10.2528/PIER09042212

3. Kancleris, Z., G. Slekas, V. Tamosiunas, and M. Tamosiuniene, "Resistive sensor for high power microwave pulse measurement of TE01 mode in circular waveguide," Progress In Electromagnetics Research, Vol. 92, 267-280, 2009.
doi:10.2528/PIER09041409

4. Sangster, A. J. and J. Grant, "Mode degeneracy in circular cylindrical ridge waveguides," Progress In Electromagnetics Research Letters, Vol. 9, 75-83, 2009.
doi:10.2528/PIERL08121804

5. Khalilpour, J. and M. Hakkak, "Controllable waveguide bandstop filter using s-shaped ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 587-596, 2010.
doi:10.1163/156939310791036458

6. Siakavara, K. and C. Damianidis, "Microwave filtering in waveguides loaded with artificial single or double negative materials realized with dielectric spherical particles in resonance," Progress In Electromagnetics Research, Vol. 95, 103-120, 2009.
doi:10.2528/PIER09061506

7. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Hoboken, NJ, 2005.

8. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

9. Skobelev, S. P. and P. S. Kildal, "A new type of the quasi-TEM eigenmodes in a rectangular waveguide with one corrugated hard wall," Progress In Electromagnetics Research, Vol. 102, 143-157, 2010.
doi:10.2528/PIER09122305

10. Xu, J., W. X. Wang, L. N. Yue, Y. B. Gong, and Y. Y. Wei, "Electromagnetic wave propagation in an elliptical chiroferrite waveguide," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2021-2030, 2009.
doi:10.1163/156939309789932430

11. Ma, J. G., "Numerical analysis of the characteristics of TE-modes of waveguides loaded with inhomogeneous dielectrics," IEE Proc. PtH, Vol. 138, 109-112, 1991.

12. Bulley, R. M., "Analysis of the arbitrary shaped waveguide by polynomial approximation," IEEE Trans. Microwave Theory Tech., Vol. 18, No. 12, 1022-1028, Dec. 1970.
doi:10.1109/TMTT.1970.1127406

13. Lin, S. L., L. W. Li, T. S. Yeo, and M. S. Leong, "Analysis of hollow conducting waveguides using superquadric functions --- A unified representation," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 5, 876-880, May 2000.
doi:10.1109/22.841893

14. Thomas, D. T., "Functional approximations for solving boundary value problems by computer," IEEE Trans. Microwave Theory Tech., Vol. 17, No. 8, 447-454, Aug. 1969.
doi:10.1109/TMTT.1969.1126995

15. Reutskiy, S. Y., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701

16. Kim, C. Y., S. D. Yu, R. F., Harrington, J. W. Ra, and S. Y. Lee, "Computation of waveguide modes for waveguides of arbitrary cross-section," IEE Proc. PtH, Vol. 137, No. 2, 145-149, Apr. 1990.

17. Paul, S. S., M. Goggans, A. A., and Kishk, "Computation of cutoff wavenumbers for partially filled waveguides of arbitrary cross section using surface integral formulations and the method of moments," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 6-7, 1111-1118, Jun./Jul. 1993.

18. Lee, J. F., D. K., Sun, Z. J., and Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 8, 1262-1271, Aug. 1991.
doi:10.1109/22.85399

19. Lee, J. F., "Finite element analysis of lossy dielectric waveguides," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 6, 1025-1031, Jun. 1994.
doi:10.1109/22.293572

20. Conciauro, G., M. Bressan, and C. Zuffada, "Waveguide modes via an integral equation leading to a linear matrix eigenvalue problem," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 11, 1495-1504, Nov. 1984.
doi:10.1109/TMTT.1984.1132880

21. Cogollos, S., S. Marini, V. E. Boria, P. Soto, A. Vidal, H. Esteban, J. V. Morro, and B. Gimeno, "Efficient modal analysis of arbitrarily shaped waveguides composed of linear, circular and elliptical arcs using the BI-RME method," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 12, 2378-2390, Dec. 2003.
doi:10.1109/TMTT.2003.819776

22. Silvestre, E., M. A. Abián, B. Gimeno, A. Ferrando, M. V. Andrés, and V. Boria, "Analysis of inhomogeneously filled waveguides using a biorthonormal-basis method," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 4, 589-596, Apr. 2000.
doi:10.1109/22.842031

23. Monsoriu, J. A., A. Coves, B. Gimeno, M. V. Andrés, and E. Silvestre, "A robust and efficient method for obtaining the complex modes in inhomogeneously filled waveguides," Microw. Opt. Tech. Letters, Vol. 37, 218-222, May 2003.
doi:10.1002/mop.10875

24. Hiptmair, R., "Higher order Whitney forms," Progress In Electromagnetics Research, Vol. 32, 271-299, 2001.
doi:10.2528/PIER00080111

25. Ding, D.-Z., R.-S. Chen, and Z. H. Fan, "An efficient SAI preconditioning technique for higher order hierarchical MLFMM implementation," Progress In Electromagnetics Research, Vol. 88, 255-273, 2008.
doi:10.2528/PIER08111501

26. Faghihi, F. and H. Heydari, "Time domain physical optics for the higher-order FDTD modeling in electromagnetic scattering from 3-D complex and combined multiple materials objects," Progress In Electromagnetics Research, Vol. 95, 87-102, 2009.
doi:10.2528/PIER09040407

27. Lai, B., N. Wang, H.-B. Yuan, and C.-H. Liang, "Hybrid method of higher-order MoM and Nyström discretization PO for 3D PEC problems," Progress In Electromagnetics Research, Vol. 109, 381-398, 2010.
doi:10.2528/PIER10081401

28. De Boor, C., A Practical Guide to Splines, Springer-Verlag, New York, 1978.
doi:10.1007/978-1-4612-6333-3


© Copyright 2014 EMW Publishing. All Rights Reserved