PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 118 > pp. 273-286

IMPEDANCE-MISMATCHED HYPERLENS WITH INCREASING LAYER THICKNESSES

By X. Li, Y. Ye, and Y. Jin

Full Article PDF (235 KB)

Abstract:
Structure with non-negative effective permittivities in the radial and tangential directions can also perform far-field imaging beyond the diffraction limit since the dispersion curves can be long and flat enough and utilized to transfer the subwavelength information. Thus we propose an impedance-mismatched hyperlens with such a dispersion curve and increasing thicknesses (from the innermost layer to the outermost) to reduce reflection losses due to the impedance difference between the nearby layer pairs. Compared with the hyperlens with same thickness for each period, the resolution ability of the hyperlens with varying thicknesses can be improved dramatically, while the image intensity is weaker. Furthermore, the influence of the layer number on the imaging is also analyzed to improve the performance of the system and an improved hyperlens with repeated thickness setting is also utilized to increase the intensity of the magnified image.

Citation:
X. Li, Y. Ye, and Y. Jin, "Impedance-Mismatched Hyperlens with Increasing Layer Thicknesses," Progress In Electromagnetics Research, Vol. 118, 273-286, 2011.
doi:10.2528/PIER11042005
http://www.jpier.org/PIER/pier.php?paper=11042005

References:
1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.
doi:10.1126/science.1108759

3. Ramakrishna, S. A., J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Optics, Vol. 50, 1419-1430, 2003.

4. Belov, P. A. and Y. Hao, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime ," Phys. Rev. B, Vol. 73, 113110, 2006.
doi:10.1103/PhysRevB.73.113110

5. Jin, Y., "Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves," Progress In Electromagnetics Research, Vol. 105, 347-364, 2010.
doi:10.2528/PIER10051309

6. Cao, P., X. Zhang, L. Cheng, and Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.
doi:10.2528/PIER09092801

7. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247-8256, 2006.
doi:10.1364/OE.14.008247

8. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

9. De Ceglia, D., M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A, Vol. 77, 033848, 2008.
doi:10.1103/PhysRevA.77.033848

10. Li, X., S. L. He, and Y. Jin, "Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies," Phys. Rev. B, Vol. 75, 045103, 2007.
doi:10.1103/PhysRevB.75.045103

11. Luo, C., S. G. Johnson, and J. D. Joannopoulos, "All-angle negative refraction without negative effective index," Phys. Rev. B, Vol. 65, 201104(R), 2002.

12. Pustai, D. M., S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, "Analysis of splitters for self-collimated beams in planar photonic crystals," Opt. Express, Vol. 12, 1823-1831, 2004.
doi:10.1364/OPEX.12.001823

13. Augustin, M., R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, "Self-guiding of infrared and visible light in photonic crystal slabs," Appl. Phys. B, Vol. 81, 313, 2005.
doi:10.1007/s00340-005-1839-9

14. Chew, W. C., Waves and Fields in Inhomogeneous Media, 161-182, Wiley-IEEE Press, 1999.

15. Ahmed, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated PEMC circular cylinder," Progress In Electromagnetics Research, Vol. 92, 91-102, 2009.
doi:10.2528/PIER09030503

16. Kildishev, A. V. and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett., Vol. 32, 3432-3434, 2007.
doi:10.1364/OL.32.003432

17. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens," J. Opt. Soc. Am. A, Vol. 24, 10, 2007.
doi:10.1364/JOSAA.24.000A52

18. Kildishev, A. V., U. K. Chettiar, Z. Jacob, V. M. Shalaev, and E. Narimanov, "Materializing a binary hyperlens design," Appl. Phys. Lett., Vol. 94, 071102, 2009.
doi:10.1063/1.3081403

19. Shvets, G. and Y. Urzhumov, "Polariton-enhanced near field lithography and imaging with infrared light," Mater. Res. Soc. Symp. Proc., Vol. 820, R1.2.1, 2004.
doi:10.1557/PROC-820-R1.2

20. Korobkin, D., Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B, Vol. 23, 468-478, 2005.
doi:10.1364/JOSAB.23.000468

21. Li, X., F. Zhuang, and C. V. KÄohnenkamp, "Optimized effective permittivity to improve imaging resolution of multilayered structures in infrared," J. Opt. Soc. Am. A, Vol. 26, 365-370, 2009.
doi:10.1364/JOSAA.26.000365

22. Li, X. and Y. Jin, "Appropriate interface termination to improve imaging resolution of multilayered structures in the infrared and optical canalization regime," J. Opt. Soc. Am. A, Vol. 24, 1861-1864, 2008.

23. Weber, M. J., Handbook of Optical Materials, CRC Press, New York, 2003.

24. Xie, H., F. Kong, and K. Li, "The electric field enhancement and resonance in optical antenna composed of Au nanoparicles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 535-548, 2009.
doi:10.1163/156939309787612419

25. Pendry, J. B. and S. A. Ramakrishna, "Near field lenses in two dimensions," J. Phys., Condensed Matter, Vol. 14, 1-17, 2002.

26. Pendry, J. B. and S. A. Ramakrishna, "Refining the perfect lens," Physica B, Vol. 338, 329-332, 2003.
doi:10.1016/j.physb.2003.08.014

27. Gao, D. and L. Gao, "Tunable lateral shift through nonlinear composites of nonspherical particles," Progress In Electromagnetics Research, Vol. 99, 273-287, 2009.
doi:10.2528/PIER09102404

28. Li, X. and F. Zhuang, "The multilayered structures with high subwavelength resolution based on the metal-dielectric composites," J. Opt. Soc. Am. A, Vol. 26, 2521-2525, 2009.
doi:10.1364/JOSAA.26.002521

29. Wu, C. J., J. J. Liao, and T. W. Chang, "Tunable multilayer Fabry-Perot resonator using electro-optical defect layer," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 531-542, 2010.


© Copyright 2014 EMW Publishing. All Rights Reserved