PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 118 > pp. 185-203

ON THE FEASIBILITY OF THE LINEAR SAMPLING METHOD FOR 3D GPR SURVEYS

By I. Catapano, F. Soldovieri, and L. Crocco

Full Article PDF (624 KB)

Abstract:
We discuss the applicability of the Linear Sampling Method (LSM) to GPR surveys carried out using array-based configurations. Since the images achieved via LSM are known to get worse when using a small number of antennas and a limited aperture, we introduce an analytic tool to foresee the expected LSM performance for a fixed array size and number of antennas. Notably, such a tool allows us to support (and appraise) the adoption of LSM to data collected with short arrays moved above the investigated domain, which is the configuration most viable in applications.

Citation:
I. Catapano, F. Soldovieri, and L. Crocco, "On the Feasibility of the Linear Sampling Method for 3D GPR Surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.
doi:10.2528/PIER11042704
http://www.jpier.org/PIER/pier.php?paper=11042704

References:
1. Daniels, D. J., Ground Penetrating Radar, 2nd Ed., The Institution of Electrical Engineers, London, UK, 2004.

2. Feng, X., F.-N. Kong, Z. Zeng, G. Fang, M. Sato, and Y. Hamada, "GPR using an array antenna for landmine detection ," Near Surface Geophysics, Vol. 2, 3-9, 2004.

3. Aubry, P. J., L. P. Ligthart, A. G. Yarovoy, and T. G. Savelyev, "Array-based GPR for shallow subsurface imaging," Proc. 4th Int. Workshop on Advanced GPR, 12-15, 2007.

4. Payne, L. A., N. Linford, and P. Linford, "Stepped frequency ground-penetrating radar survey with a multi-element array antenna: Results from field application on archaeological sites," Archaeol. Prospect., Vol. 17, 87-98, 2010.

5. Soldovieri, F., A. Brancaccio, G. Leone, and R. Pierri, "Shape reconstruction of perfectly conducting objects by multiview experimental data," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 1, 65-71, 2005.
doi:10.1109/TGRS.2004.839432

6. Catapano, I., L. Crocco, M. D'Urso, and T. Isernia, "A novel effective model for solving 3-D nonlinear inverse scattering problems in lossy scenarios," IEEE Geosci. Remote Sens. Lett., Vol. 3, No. 3, 302-306, 2006.
doi:10.1109/LGRS.2006.869976

7. Catapano, I., L. Crocco, R. Persico, M. Pieraccini, and F. Soldovieri, "Linear and nonlinear microwave tomography approaches for subsurface prospecting: Validation on real data," IEEE Antennas Wireless Propagat. Lett., Vol. 5, No. 1, 49-53, 2006.
doi:10.1109/LAWP.2006.870363

8. Fischer, C., A. Herschlein, M. Younis, and W. Wiesbeck, "Detection of antipersonnel mines by using the factorization method on multistatic ground-penetrating radar measurements," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 1, 85-92, 2007.
doi:10.1109/TGRS.2006.883464

9. Crocco, L., M. D'Urso, and T. Isernia, "The contrast source-extended born model for 2d subsurface scattering problems," Progress In Electromagnetics Research B, Vol. 17, 343-359, 2009.
doi:10.2528/PIERB09080502

10. Crocco, L., F. Soldovieri, T. Millington, and N. J. Cassidy, "Bistatic tomographic GPR imaging for incipient pipeline leakage evaluation," Progress In Electromagnetics Research, Vol. 101, 307-321, 2010.
doi:10.2528/PIER09122206

11. Lo Monte, L., D. Erricolo, F. Soldovieri, and M. C. Wicks, "Radio frequency tomography for tunnel detection," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 3, 1128-1137, 2010.
doi:10.1109/TGRS.2009.2029341

12. Huang, Y., Y. Liu, Q. H. Liu, and J. Zhang, "Improved 3-D GPR detection by NUFFT combined with MPD method," Progress In Electromagnetics Research, Vol. 103, 185-199, 2010.
doi:10.2528/PIER10021005

13. Soldovieri, F., O. Lopera, and S. Lambot, "Combination of advanced inversion techniques for an accurate target localization via GPR for demining applications ," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 1, 451-461, 2011.
doi:10.1109/TGRS.2010.2051675

14. Bermani, E., A. Boni, S. Caorsi, M. Donelli, and A. Massa, "A multi-source strategy based on a learning-by-examples technique for buried object detection," Progress In Electromagnetics Research, Vol. 48, 185-200, 2004.
doi:10.2528/PIER03110701

15. Monk, P., D. Colton, and K. Giebermann, "A regularized sampling method for solving three dimensional inverse scattering problems," SIAM J. Sci. Comput., Vol. 21, 2316-2330, 2000.

16. Cakoni, F. and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, Berlin, Germany, 2006.

17. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. Antennas Propagat., Vol. 55, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563

18. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics, Bristol, UK, 1998.

19. D'Urso, M., T. Isernia, I. Catapano, and L. Crocco, "3D microwave imaging via preliminary support reconstruction: Testing on the fresnel 2008 database," Inverse Probl., Vol. 25, 024002, 2009.

20. Catapano, I., L. Crocco, and T. Isernia, "Improved sampling methods for shape reconstruction of 3-D buried targets," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 10, 3265-3273, 2008.
doi:10.1109/TGRS.2008.921745

21. Chew, W. C., Waves Anf Fields in Inhomogeneous Media, The Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ, 1995.

22. Catapano, I. and L. Crocco, "An imaging method for concealed targets," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 5, 1301-1309, 2009.
doi:10.1109/TGRS.2008.2010773

23. Leone, G. and F. Soldovieri, "Analysis of the distorted Born approximation for subsurface reconstruction: Truncation and uncertainties effects," IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 1, 66-74, 2003.
doi:10.1109/TGRS.2002.806999


© Copyright 2014 EMW Publishing. All Rights Reserved