PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 117 > pp. 435-448

ITERATIVE HYBRID METHOD FOR ELECTROMAGNETIC SCATTERING FROM A 3-D OBJECT ABOVE A 2-D RANDOM DIELECTRIC ROUGH SURFACE

By W. Yang, Z. Zhao, C. Qi, W. Liu, and Z.-P. Nie

Full Article PDF (712 KB)

Abstract:
An iterative hybrid method combining the Kirchhoff approximation (KA) and the multilevel fast multipole algorithm (MLFMA) is studied for electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) random dielectric rough surface. In order to reduce the computational costs, some treatments have been studied. Firstly, the fast far-field approximation (FAFFA) is utilized to speed up the electromagnetic coupling interaction process between the rough surface and the object. Secondly, based on the scattering mechanism of the rough surface, a truncation rule on moderate rough surface for bi-static scattering is proposed under the plane wave illumination, which can further speed up the iteration. Compared with the conventional methods, the hybrid method with the above treatments is very efficient to analyze the scattering of a 3-D object above random rough surfaces. Simulation results validate the effectiveness and accuracy of the iterative hybrid method.

Citation:
W. Yang, Z. Zhao, C. Qi, W. Liu, and Z.-P. Nie, "Iterative Hybrid Method for Electromagnetic Scattering from a 3-D Object Above a 2-D Random Dielectric Rough Surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011.
doi:10.2528/PIER11043001
http://www.jpier.org/PIER/pier.php?paper=11043001

References:
1. Liu, Z. J. and L. Carin, "Efficient evaluation of the half-space Green's function for fast-multipole scattering models," Microw. Opt. Technol. Lett., Vol. 29, No. 6, 388-392, 2001.
doi:10.1002/mop.1186

2. Guo, L. X., A. Q.Wang, and J. Ma, "Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MoM based on PC clusters," Progress In Electromagnetics Research, Vol. 89, 149-166, 2009.
doi:10.2528/PIER08121002

3. Wang, X. and L. W. Li, "Numerical characterization of bistatic scattering from pec cylinder partially embedded in a dielectric rough surface interface: Horizontal polarization," Progress In Electromagnetics Research, Vol. 91, 35-51, 2009.
doi:10.2528/PIER09013001

4. Wang, X., Y. B. Gan, and L. W. Li, "Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM case," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 2003.

5. Johnson, J. T., "A numerical study of scattering from an object above a rough surface," IEEE Trans. Antennas Propag., Vol. 50, No. 10, 1361-1367, 2002.
doi:10.1109/TAP.2002.802152

6. Ye, H. X. and Y. Q. Jin, "A hybrid analytic-numerical algorithm of scattering from an object above a rough surface," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 5, 1174-1180, 2007.
doi:10.1109/TGRS.2007.892609

7. Bausssard, A., M. Rochdi, and A. Khenchaf, "PO/MEC-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.

8. Xu, F. and Y. Q. Jin, "Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface," IEEE Trans. Antennas Propag., Vol. 57, No. 5, 1495-1505, 2009.
doi:10.1109/TAP.2009.2016691

9. Guo, L. X. and H. Zeng, "Bistatic scattering from a three dimensional object above a two dimensional randomly rough surface modeled with the parallel FDTD approach," J. Opt. Soc. Am., Vol. 26, No. 11, 2383-2392, 2009.
doi:10.1364/JOSAA.26.002383

10. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a gaussian roughness spectrum," J. Acoust. Soc. Am., Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188

11. Yang, W., Z. Q. Zhao, and Z. P. Nie, "Fast fourier transform multilevel fast multipole algorithm in rough ocean surface scattering," Electromagnetics, Vol. 29, No. 7, 541-552, 2009.
doi:10.1080/02726340903167079

12. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

13. Chew, W. C., T. J. Cui, and J. M. Song, "A FAFFA-MLFMA algorithm for electromagnetic scattering," IEEE Trans. Antennas Propag., Vol. 50, No. 11, 1641-1648, 2002.
doi:10.1109/TAP.2002.802162

14. Thorsos, E. I. and D. R. Jackson, "The validity of the perturbation approximation for rough surface scattering using a gaussian roughness spectrum," J. Acoust. Soc. Am., Vol. 86, No. 1, 261-277, 1989.
doi:10.1121/1.398342

15. Ye, H. X., Y. Q. Jin, and , "Fast iterative approach to difference scattering from the target above a rough surface ," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 1, 108-115, 2006.
doi:10.1109/TGRS.2005.859955

16. Zhang, X. Y. and X. Q. Sheng, "Highly efficient hybrid method for computing the backscattering from objects above a dielectric rough surface,", Vol. 30, No. 4, 460-463, 2010 (in Chinese).

17. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

18. Pierson, W. and L. Moskowitz, "A proposed spectral form for fully developed wind seas based upon the similarity theory of S. A. Kitaigorodskii," Journal of Geophysical Research, Vol. 69, 5181-5190, 1964.
doi:10.1029/JZ069i024p05181


© Copyright 2014 EMW Publishing. All Rights Reserved