PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 119 > pp. 363-379

A NEW LOOK AT THE POINT TARGET REFERENCE SPECTRUM FOR BISTATIC SAR

By J. Wu, J. Yang, Y. Huang, Z. Liu, and H. Yang

Full Article PDF (483 KB)

Abstract:
Focusing bistatic synthetic aperture radar (SAR) data in frequency domain requires two-dimensional (2D) point target reference spectrum (PTRS). Loffeld's bistatic formula (LBF) and the Method of Series Reversion (MSR) have been introduced recently to compute PTRS of bistatic SAR. In this paper, firstly we generalize the original LBF (OLBF) by introducing the Doppler contribution functions of transmitter and receiver. Thus, OLBF and its derivatives (e.g., extended LBF) can be viewed as special forms of the generalized LBF with constant Doppler contributions. Based on this, secondly the ideal LBF (ILBF) with no computing error, except the error resulting from the principle of stationary phase, is also presented. The ILBF reveals that the theoretical PTRS of bistatic SAR consists of only two monostatic terms, but it does not include bistatic deformation term in comparison with OLBF. It supplies us with a target when we deduce the PTRS for bistatic SAR. Finally, to get the precise analytical PTRS for general bistatic SAR, an approximated ILBF (AILBF) is proposed. It expresses the Doppler contributions of the transmitter and receiver as power series and can approach the ILBF very well. AILBF can keep the precision as MSR and inherit a simple form from LBF. In addition, error limit for the validity of bistatic PTRS is also given. The results in this paper can be used to develop imaging algorithms for extreme bistatic (e.g., spaceborne/airborne) and high squint (e.g., bistatic forward-looking) cases.

Citation:
J. Wu, J. Yang, Y. Huang, Z. Liu, and H. Yang, "A New Look at the Point Target Reference Spectrum for Bistatic SAR," Progress In Electromagnetics Research, Vol. 119, 363-379, 2011.
doi:10.2528/PIER11050704
http://www.jpier.org/PIER/pier.php?paper=11050704

References:
1. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

2. Lim, S. H., J. H. Han, S. Y. Kim, and N. H. Myung, "Azimuth beam pattern synthesis for airborne SAR system optimization," Progress In Electromagnetics Research, Vol. 106, 295-309, 2010.
doi:10.2528/PIER10061901

3. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

4. Xu, W., P. Huang, and Y. K. Deng, "Multi-channel SPCMB-TOPS SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.

5. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

6. Liu, Q., W. Hong, W. X. Tan, Y. Lin, Y. Wang, and Y. Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
doi:10.2528/PIER11060503

7. Ben Kassem, M. J., J. Saillard, and A. Khenchaf, "BISAR mapping I. Theory and modelling," Progress In Electromagnetics Research, Vol. 61, 39-65, 2006.
doi:10.2528/PIER05092201

8. Ben Kassem, M. J., J. Saillard, A. Khenchaf, "BISAR mapping II Treatment, simulation and experimentation," Progress In Electromagnetics Research, Vol. 61, 67-87, 2006.
doi:10.2528/PIER06012403

9. Liu, Q., S. Xing, X. Wang, J. Dong, and D. Dai, "A strip-map SAR coherent jammer structure utilizing periodic modulation technology," Progress In Electromagnetics Research B, Vol. 28, 111-128, 2011.

10. Krieger, G., H. Fiedler, and A. Moreira, "Bi- and multistatic SAR: Potentials and challenges," Proc. EUSAR, 365-370, Ulm, Germany, May 2004.

11. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Norwood, MA, 2005.

12. Chan, Y. K., S. Y., and Lim, "Synthetic aperture radar (SAR) signal generation," Progress In Electromagnetics Research B, Vol. 1, 269-290, 2008.
doi:10.2528/PIERB07102301

13. Zhao, Y. W., M. Zhang, and H. Chen, "An efficient ocean SAR raw signal simulation by employing fast Fourier transform," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2273-2284, 2010.
doi:10.1163/156939310793699064

14. Chang, Y. L., C. Y. Chiang, and K. S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

15. Zhang, M., Y. W. Zhao, H. Chen, and W. Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501

16. Wang, X., D. Zhu, and Z. Zhu, "An implementation of bistatic PFA using chirp scaling," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 745-753, 2010.
doi:10.1163/156939310791036430

17. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

18. Mao, X. H., D. Y. Zhu, L. Ding, and Z. D. Zhu, "Comparative study of RMA and PFA on their responses to moving target," Progress In Electromagnetics Research, Vol. 110, 103-124, 2010.
doi:10.2528/PIER10090607

19. Loffeld, O., H. Nies, V. Peters, and S. Knedlik, "Models and useful relations for bistatic SAR processing," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 10, 2031-2038, October 2004.
doi:10.1109/TGRS.2004.835295

20. Sun, J., S. Mao, G.Wang, and W. Hong, "Extended exact transfer function algorithm for bistatic SAR of translational invariant case ," Progress In Electromagnetics Research, Vol. 99, 89-108, 2009.
doi:10.2528/PIER09091203

21. Sun, J., S. Mao, G. Wang, W. Hong, and , "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
doi:10.2528/PIER10030703

22. Neo, Y. L., F. H. Wong, and I. G. Cumming, "A comparison of point target spectra derived for bistatic SAR processing," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 9, 2481-2492, September 2008.
doi:10.1109/TGRS.2008.919018

23. Neo , Y. L., F. H. Wong, and I. G. Cumming, "A two-dimensional spectrum for bistatic SAR processing using series reversion," IEEE Geosci. Remote Sens. Lett., Vol. 4, No. 1, 93-96, September 2007.
doi:10.1109/LGRS.2006.885862

24. Bamler, R., F. Meyer, and W. Liebhart, "Processing of bistatic SAR data from quasi-stationary configurations," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3350-3358, November 2007.
doi:10.1109/TGRS.2007.895436

25. Natroshvili, K., O. Loffeld, H. Nies, A. M. Ortiz, and S. Knedlik, "Focusing of general bistatic SAR configuration data with 2-D inverse scaled FFT ," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 10, 2718-2727, October 2006.
doi:10.1109/TGRS.2006.872725

26. Wang, R., O. Loffeld, Q. Ul-Ann, H. Nies, A. Medrano Ortiz, and A. Samarah, "A bistatic point target reference spectrum for general bistatic SAR processing," IEEE Geosci. Remote Sens. Lett., Vol. 5, No. 3, 517-521, July 2008.
doi:10.1109/LGRS.2008.923542

27. Sew, B. C., Y. K. Chan, C. S. Lim, T. S. Lim, and V. C. Koo, "Modified multilook cross correlation (MLCC) algorithm for Doppler centroid estimation in synthetic aperture radar signal processing," Progress In Electromagnetics Research C, Vol. 20, 215-225, 2011.

28. Choi, G. G., S. H. Park, H. T. Kim, and K. T. Kim, "ISAR imaging of multiple targets based on particle swarm optimization and hough transform," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1825-1834, 2009.
doi:10.1163/156939309789932322

29. Tian, B., D. Y. Zhu, and Z. D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

30. Walterscheid, I., T. Espeter, A. Brenner, J. Klare, J. Ender, H. Nies, R.Wang, and O. Loffeld, "Bistatic SAR experiments with PAMIR and terraSAR-X: Setup, processing, and image results," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 8, 3268-3279, 2010.
doi:10.1109/TGRS.2010.2043952

31. Ul-Ann, Q., O. Loffeld, H. Nies, R. Wang, and S. Knedlik, "Optimizing the individual azimuth contribution of transmitter and receiver phase terms in Loffeld's bistatic formula (LBF) for bistatic SAR processing ," Proc. IGARSS, Vol. 3, III-455-III-458, 2008.

32. Yang, K., F. He, and D. Liang, "A two-dimensional spectrum for general bistatic SAR processing," IEEE Geosci. Remote Sens. Lett., Vol. 7, No. 1, 108-112, 2010.
doi:10.1109/LGRS.2009.2028163

33. Wang, R., O. Loffeld, Y. Neo, H. Nies, and Z. Dai, "Extending Loffeld's bistatic formula for the general bistatic SAR configuration ," IET Radar, Sonar & Navigation, Vol. 4, No. 1, 74-84, 2010.
doi:10.1049/iet-rsn.2009.0099

34. Wu, J., J. Yang, Y. Huang, H. Yang, and H. Wang, "Bistatic forward-looking SAR: Theory and challenges," Proc. IEEE Radar Conf., 1-4, Pasadena, CA, May 2009.


© Copyright 2014 EMW Publishing. All Rights Reserved