PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 120 > pp. 35-50

TUNABLE SINGLE-NEGATIVE METAMATERIALS BASED ON MICROSTRIP TRANSMISSION LINE WITH VARACTOR DIODES LOADING

By T. Feng, Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen

Full Article PDF (1,439 KB)

Abstract:
In this paper, tunable single-negative (TSNG) metamaterials based on microstrip with varactor diodes loading are investigated. By tuning the external voltage, our structure can provide either an epsilon-negative or a mu-negative band gap, with varying gap width (the ratio of bandwidth to center frequency can be from 0 to over 100%) and depth (from 0 dB to about -30 dB). Moreover, the tunneling mode in a heterostructure constructed by epsilon-negative and TSNG metamaterials is also studied. The results show that its transmission, Q-factor, and electromagnetic localization can also be controlled conveniently. All these properties make our structure promising to be utilized as a practical switching device, or a suitable platform for the study of nonlinear effect in metamaterials.

Citation:
T. Feng, Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable Single-Negative Metamaterials Based on Microstrip Transmission Line with Varactor Diodes Loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.
doi:10.2528/PIER11052203
http://www.jpier.org/PIER/pier.php?paper=11052203

References:
1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

3. Grbic, A. and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," J. Appl. Phys., Vol. 92, 5930, 2002.
doi:10.1063/1.1513194

4. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 980-992, 2004.
doi:10.1109/TMTT.2004.823579

5. Li, H. Q., J. M. Hao, L. Zhou, Z. Y. Wei, L. K. Gong, H. Chen, and C. T. Chan, "All-dimensional subwavelength cavities made with metamaterials," Appl. Phys. Lett., Vol. 89, 104101, 2006.
doi:10.1063/1.2338795

6. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and ITS application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

7. Mirza, I. O., J. N. Sabas, S. Shi, and D. W. Prather, "Experimental demonstration of metamaterial-based phase modulation," Progress In Electromagnetics Research, Vol. 93, 1-12, 2009.
doi:10.2528/PIER09050412

8. Hwang, R.-B., H.-W. Liu, and C.-Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606

9. Gurel, L., O. Ergul, A. Unal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106

10. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401

11. Yu, G.-X., T.-J. Cui, W. X. Jiang, X. M. Yang, Q. Cheng, and Y. Hao, "Transformation of different kinds of electromagnetic waves using metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 583-592, 2009.
doi:10.1163/156939309788019723

12. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

13. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

14. Bucinskas, J., L. Nickelson, and V. Sugurovas, "Microwave scattering and absorption by a multilayered lossy metamaterial --- Glass cylinder," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.
doi:10.2528/PIER10041711

15. Choi, J. and C. Seo, "High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

16. Wang, B. and K. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.
doi:10.2528/PIER10060103

17. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

18. Gric, T., L. Nickelson, and S. Asmontas, "Electrodynamical characteristic particularity of open metamaterial square and circular waveguides," Progress In Electromagnetics Research, Vol. 109, 361-379, 2010.
doi:10.2528/PIER10082505

19. Kuo, C.-W., S.-Y. Chen, Y.-D. Wu, and M.-H. Chen, "Analyzing the multilayer optical planar waveguides with double-negative metamaterial," Progress In Electromagnetics Research, Vol. 110, 163-178, 2010.
doi:10.2528/PIER10101405

20. Cheng, Q., H.-F. Ma, and T.-J. Cui, "A complementary lens based on broadband metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 93-101, 2010.
doi:10.1163/156939310790322172

21. Wu, Z., B.-Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, 983-992, 2010.
doi:10.1163/156939310791285173

22. Pu, T. L., K. M. Huang, B. Wang, and Y. Yang, "Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 1207-1217, 2010.
doi:10.1163/156939310791586025

23. Liu, Y., X. Chen, and K. Huang, "A novel planar printed array antenna with SRR slots," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2155-2164, 2010.
doi:10.1163/156939310793699127

24. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553

25. Jiang, H. T., H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, "Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials," J. Appl. Phys., Vol. 98, 013101, 2005.
doi:10.1063/1.1949273

26. Feng, T. H., Y. H. Li, H. Chen, and Y. L. Shi, "Light tunneling in a pair structure consisting of epsilon-negative and mu-negative media," Proc. of SPIE, Vol. 6827, 68270G1-9, 2007.

27. Feng, T. H., Y. H. Li, J. Y. Guo, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Highly localized mode in a pair structure made of epsilon-negative and mu-negative metamaterials," J. Appl. Phys., Vol. 104, 013107, 2008.
doi:10.1063/1.2949264

28. Siakavara, K. and C. Damianidis, "Microwave filtering in waveguides loaded with artificial single or double negative materials realized with dielectric spherical particles in resonance," Progress In Electromagnetics Research, Vol. 95, 103-120, 2009.
doi:10.2528/PIER09061506

29. Entezar, S. R., A. Namdar, H. Rahimi, and H. Tajalli, "Localized waves at the surface of a single-negative periodic multilayer structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2--3, 171-182, 2009.
doi:10.1163/156939309787604427

30. Manapati, M. B. and R. S. Kshetrimayum, "SAR reduction in human head from mobile phone radiation using single negative metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1385-1395, 2009.
doi:10.1163/156939309789108606

31. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303

32. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

33. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

34. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

35. Huangfu, J. T., L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of V-like metallic patterns," Appl. Phys. Lett., Vol. 84, 1537-1539, 2004.
doi:10.1063/1.1655673

36. Chen, H. S., L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E, Vol. 70, No. 5, 057605, 2004.
doi:10.1103/PhysRevE.70.057605

37. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

38. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 2, 68-70, 2004.
doi:10.1109/LMWC.2003.822563

39. Martin, F., J. Bonache, F. Falcone, M. Sorolla, and R. Marqués, "Split ring resonator-based left-handed coplanar waveguide," Appl. Phys. Lett., Vol. 83, 4652-4654, 2003.
doi:10.1063/1.1631392

40. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401

41. Mao, S. G., S. L. Chen, and C. W. Huang, "Effective electromagnetic parameters of novel distributed left-handed microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1515-1521, 2005.
doi:10.1109/TMTT.2005.845192

42. He, Y. X., P. He, S. D. Yoona, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, "Tunable negative index metamaterial using yttrium iron garnet," J. Magn. Magn. Mater., Vol. 313, 187-191, 2007.
doi:10.1016/j.jmmm.2006.12.031

43. Kang, L., Q. Zhao, H. J. Zhao, and J. Zhou, "Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods," Opt. Express, Vol. 16, No. 12, 8825-8834, 2008.
doi:10.1364/OE.16.008825

44. Kang, L., Q. Zhao, H. J. Zhao, and J. Zhou, "Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires," Opt. Express, Vol. 16, No. 22, 17269, 2008.
doi:10.1364/OE.16.017269

45. Zhao, H. J., L. Kang, J. Zhou, Q. Zhao, L. T. Li, L. Peng, and Y. Bai, "Experimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial," Appl. Phys. Lett., Vol. 93, 201106, 2008.
doi:10.1063/1.3033397

46. Zhao, Q., B. Du, L. Kang, H. J. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. T. Li, and Y. G. Meng, "Tunable negative permeability in an isotropic dielectric composite," Appl. Phys. Lett., Vol. 92, 051106, 2008.
doi:10.1063/1.2841811

47. He, G. H., R. X. Wu, Y. Poo, and P. Chen, "Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh," J. Appl. Phys., Vol. 107, 093522, 2010.
doi:10.1063/1.3359718

48. Zhang, F. L., L. Kang, Q. Zhao, J. Zhou, X. P. Zhao, and D. Lippens, "Magnetically tunable left handed metamaterials by liquid crystal orientation," Opt. Express, Vol. 17, No. 6, 4360-4366, 2009.
doi:10.1364/OE.17.004360

49. Degiron, A., J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express, Vol. 15, No. 3, 1115-1127, 2007.
doi:10.1364/OE.15.001115

50. Shen, N. H., M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, "Optically implemented broadband blueshift switch in the terahertz regime," Phys. Rev. Lett., Vol. 106, 037403, 2011.
doi:10.1103/PhysRevLett.106.037403

51. Lim, S., C. Caloz, and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 161-173, 2005.
doi:10.1109/TMTT.2005.856086

52. Gil, I., J. Bonache, J. Garcia-Garcia, and F. Martin, "Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2665-2674, 2005.
doi:10.1109/TMTT.2006.872949

53. Choi, J. and C. Seo, "Broadband VCO using electronically controlled metamaterial transmission line based on varactor-loaded split-ring resonator," Microw. Opt. Tech. Lett., Vol. 50, No. 4, 1078-1082, 2008.
doi:10.1002/mop.23305

54. Kapitanova1, P., D. Kholodnyak, and I. Vendik, Tuneable lumped-element directional coupler using metamaterial transmislumped-element directional coupler using metamaterial transmission lines, Proc. of the 39th European Microwave Conference, Rome, Italy, September 2009.

55. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
doi:10.2528/PIER09120709

56. Kozyrev, A. B., H. Kim, A. Karbassi, and D. W. Van Der Weide, "Wave propagation in nonlinear left-handed transmission line media," Appl. Phys. Lett., Vol. 87, 121109, 2005.
doi:10.1063/1.2056581

57. Powell, D. A., I. V. Shadrivov, and Y. S. Kivshar, "Asymmetric parametric amplification in nonlinear left-handed transmission lines," Appl. Phys. Lett., Vol. 94, 084105, 2009.
doi:10.1063/1.3089842

58. Kozyrev, A. B. and D. W. Van Der Weide, "Pulse formation in nonlinear left-handed transmission line media," Appl. Phys. Lett., Vol. 96, 104106, 2010.
doi:10.1063/1.3355548

59. Wang, Z. B., Y. J. Feng, B. Zhu, J. M. Zhao, and T. Jiang, "Dark schrodinger solitons and harmonic generation in left-handed nonlinear transmission line," J. Appl. Phys., Vol. 107, 094907, 2010.
doi:10.1063/1.3418556


© Copyright 2014 EMW Publishing. All Rights Reserved