PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 118 > pp. 135-149

TRANSIENT WAVE PROPAGATION IN A GENERAL DISPERSIVE MEDIA USING THE LAGUERRE FUNCTIONS IN A MARCHING-ON-IN-DEGREE (MOD) METHODOLOGY

By B.-H. Jung, Z. Mei, and T. K. Sarkar

Full Article PDF (237 KB)

Abstract:
The objective of this paper is to illustrate how the marching-on-in-degree (MOD) method can be used for efficient and accurate solution of transient problems in a general dispersive media using the finite difference time-domain (FDTD) technique. Traditional FDTD methods when solving transient problems in a general dispersive media have disadvantages because they need to approximate the time domain derivatives by finite differences and the time domain convolutions by using finite summations. Here we provide an alternate procedure for transient wave propagation in a general dispersive medium where the two issues related to finite difference approximation in time and the time consuming convolution operations are handled analytically using the properties of the associate Laguerre functions. The basic idea here is that we fit the transient nature of the fields, the permittivity and permeability with a series of orthogonal associate Laguerre basis functions in the time domain. In this way, the time variable can not only be decoupled analytically from the temporal variations but that the final computational form of the equations is transformed from FDTD to a FD formulation in the differential equations after a Galerkin testing. Numerical results are presented for transient wave propagation in general dispersive materials which use for example, a Debye, Drude, or Lorentz models.

Citation:
B.-H. Jung, Z. Mei, and T. K. Sarkar, "Transient Wave Propagation in a General Dispersive Media Using the Laguerre Functions in a Marching-on-in-Degree (MOD) Methodology," Progress In Electromagnetics Research, Vol. 118, 135-149, 2011.
doi:10.2528/PIER11052408
http://www.jpier.org/PIER/pier.php?paper=11052408

References:
1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

2. Kunz, K. S. and R. J. Ruebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC, Boca Raton, FL, 1993.

3. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, IEEE Press, Piscataway, NJ, 2000.

4. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

5. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., Vol. 32, No. 3, 222-227, Aug. 1990.
doi:10.1109/15.57116

6. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma ," IEEE Trans. Antennas Propag., Vol. 39, No. 1, 29-34, Jan. 1991.
doi:10.1109/8.64431

7. Luebbers, R. J. and F. Hunsberger, "FDTD for Nth-order dispersive media," EEE Trans. Antennas Propag., Vol. 40, No. 11, 1297-1301, Nov. 1992.
doi:10.1109/8.202707

8. Luebbers, R. J., D. Steich, and K. Kunz, "FDTD calculation of scattering from frequency-denpendent materials," IEEE Trans. Antennas Propag., Vol. 41, No. 9, 1249-1257, Sep. 1993.
doi:10.1109/8.247751

9. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag., Vol. 44, No. 6, 792-797, Jun. 1996.
doi:10.1109/8.509882

10. Chung, Y. S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 697-704, Mar. 2003.
doi:10.1109/TMTT.2003.808732

11. Jung, B. H. and T. K. Sarkar, "Analysis of transient electromagnetic scattering with plane wave incidence using MOD-FDM," Progress In Electromagnetics Research, Vol. 77, 111-120, 2007.
doi:10.2528/PIER07080302

12. Jung, B. H. and T. K. Sarkar, "Solving time domain Helmholtz wave equation with MOD-FDM," Progress In Electromagnetics Research, Vol. 79, 339-352, 2008.
doi:10.2528/PIER07102802

13. Ha, M., K. Srinivasan, and M. Swaminathan, "Transient chippackage cosimulation of multiscale structures using the Laguerre-FDTD scheme," IEEE Trans. Adv. Packag., Vol. 32, No. 4, 816-830, Nov. 2009.

14. Duan, Y.-T., B. Chen, D.-G. Fang, and B.-H. Zhou, "Efficient implementation for 3-D Lagurre-based finite-difference time-domain method," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 1, 56-64, Jan. 2011.
doi:10.1109/TMTT.2010.2091206

15. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time-domain EFIE, MFIE, and CFIE formulations using Laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Progress In Electromagnetics Research, Vol. 39, 1-45, 2003.
doi:10.2528/PIER02083001

16. Jung, B. H., T. K. Sarkar, and M. Salazar-Palma, "Time domain EFIE and MFIE formulations for analysis of transient electromagnetic scattering from 3-D dielectric objects ," Progress In Electromagnetics Research, Vol. 49, 113-142, 2004.
doi:10.2528/PIER04022304

17. Shi, Y. and J.-M. Jin, "A time-domain volume integral equation and its marching-on-in-degree solution for analysis of dispersive dielectric objects," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 969-978, Mar. 2011.
doi:10.1109/TAP.2010.2103038

18. Keilson, J. and W. R. Nunn, "Laguerre transformation as a tool or the numerical solution of integral equations of convolution type," Appl. Math and Comput., Vol. 5, 313-359, 1979.
doi:10.1016/0096-3003(79)90021-3

19. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1980.

20. Poularikas, A. D., The Transforms and Applications Handbook, 2nd Ed., CRC Press, 2000.

21. Yuan, M., A. De, T. K. Sarkar, J. Koh, and B. H. Jung, "Conditions for generation of stable and accurate hybrid TD-FD MoM solutions," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2552-2563, Jun. 2006.
doi:10.1109/TMTT.2006.875823

22. Rao, S. M., Time Domain Electromagnetics, Academic Press, 1999.

23. Kong, J. A., Electromagnetic Wave Theory, 2nd Ed., Vol. 3, John Wiley & Sons, Inc., 1990.


© Copyright 2014 EMW Publishing. All Rights Reserved