PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 118 > pp. 505-525

RCS COMPUTATION USING A PARALLEL IN-CORE AND OUT-OF-CORE DIRECT SOLVER

By D. Garcia-Donoro, I. Martinez-Fernandez, L. E. Garcia-Castillo, Y. Zhang, and T. K. Sarkar

Full Article PDF (954 KB)

Abstract:
Application to RCS computation of a higher order solver based on the surface integral approach is presented. The solver uses a direct method to solve the corresponding algebraic system of equations. Two versions of the solver are available: in-core and out-of-core. Both are efficiently implemented as parallel codes using Message Passing Interface libraries. Several benchmark structures are analyzed showing the reliability, performance, and versatility to run in a wide variety of computer platforms, of the solver. The results shown are illustrative of what is the maximum frequency of analysis of the structures for a given type of simulation platform.

Citation:
D. Garcia-Donoro, I. Martinez-Fernandez, L. E. Garcia-Castillo, Y. Zhang, and T. K. Sarkar, "RCS Computation Using a Parallel in-Core and Out-of-Core Direct Solver," Progress In Electromagnetics Research, Vol. 118, 505-525, 2011.
doi:10.2528/PIER11052611
http://www.jpier.org/PIER/pier.php?paper=11052611

References:
1. Ludwig, A. C., "Computation of radiation patterns involving numerical double integration," IEEE Transactions on Antennas and Propagation, Vol. 16, 767-769, Nov. 1968.
doi:10.1109/TAP.1968.1139296

2. Ufimtsev, P. Y., Theory of Edge Diffraction in Electromagnetics, Tech Science Press, 2003.

3. Moschovitis, C. G., H. Anastassiu, and P. V. Frangos, "Scattering of electromagnetic waves from a rectangular plate using an extended stationary phase method based on Fresnel functions (SPM-F)," Progress In Electromagnetics Research, Vol. 107, 63-99, 2010.
doi:10.2528/PIER10040104

4. Keller, J. B., "Geometrical theory of diffction," Journal of the Optical Society of America, 1962.

5. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, 1448-1461, Nov. 1974.

6. Ling, H., R.-C. Chou, and S.-W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and Propagation, Vol. 37, 194-205, Feb. 1989.
doi:10.1109/8.18706

7. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, 1993.

8. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., 2002.

9. Salazar-Palma, M., T. K. Sarkar, L. E. García-Castillo, T. Roy, and A. R. Djordjevic, Iterative and Self-adaptive Finite-elements in Electromagnetic Modeling, Artech House Publishers, Inc., Norwood, MA, 1998.

10. Taflove, M., Advances in Computational Electrodynamics: The Finite-difference Time-domain Method , Artech House Publishers, Inc., 1998.

11. Ilic, M., M. Djordjevic, A. Ilic, and B. Notaros, "Higher order hybrid FEM-MoM technique for analysis of antennas and scatterers," IEEE Transactions on Antennas and Propagation, Vol. 57, 1452-1460, May 2009.
doi:10.1109/TAP.2009.2016725

12. Chen, M., Y. Zhang, X. W. Zhao, and C. H. Liang, "Analysis of antenna around NURBS surface with hybrid MoM-PO technique," IEEE Transactions on Antennas and Propagation, Vol. 55, 407-413, Feb. 2007.
doi:10.1109/TAP.2006.889814

13. Becker, A. and V. Hansen, "A hybrid method combining the multitemporal resolution time-domain method of moments with the time-domain geometrical theory of di®raction for thin-wire antenna problems," IEEE Transactions on Antennas and Propagation, Vol. 54, 953-960, Mar. 2006.
doi:10.1109/TAP.2006.869906

14. Fernandez-Recio, R., L. E. García-Castillo, I. Gomez-Revuelto, and M. Salazar-Palma, "Fully coupled hybrid FEM-UTD method using NURBS for the analysis of radiation problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 774-783, Mar. 2008.
doi:10.1109/TAP.2008.916878

15. Gomez-Revuelto, I., L. E. García-Castillo, M. Salazar-Palma, and T. K. Sarkar, "Fully coupled hybrid method FEM/highfrequency technique for the analysis of radiation and scattering problems ," Microwave and Optical Technology Letters, Vol. 47, 104-107, Oct. 2005.
doi:10.1002/mop.21094

16. Liu, Z.-L. and J. Yang, "Analysis of electromagnetic scattering with higher-order moment method and NURBS model," Progress In Electromagnetics Research, Vol. 96, 83-100, 2009.
doi:10.2528/PIER09071704

17. Wang, S., X. Guan, D.-W. Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higher-order MoM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

18. Lai, B., N. Wang, H.-B. Yuan, and C.-H. Liang, "Hybrid method of higher-order MoM and Nyström discretization PO for 3D PEC problems," Progress In Electromagnetics Research, Vol. 109, 381-398, 2010.
doi:10.2528/PIER10081401

19. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, 7-12, Jun. 1993.
doi:10.1109/74.250128

20. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Transactions on Computer Aided Design Integrated Circuits, Vol. 16, 1059-1072, Oct. 1997.
doi:10.1109/43.662670

21. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems ," Radio Science, Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

22. Hu, L., L.-W. Li, and T. S. Yeo, "Analysis of scattering by large inhomogeneous bi-anisotropic objects using AIM," Progress In Electromagnetics Research, Vol. 99, 21-36, 2009.
doi:10.2528/PIER09101204

23. Seo, S. M. and J. F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Transactions on Magnetics, Vol. 41, 1476-1479, May 2005.
doi:10.1109/TMAG.2005.844564

24. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

25. Seo, S. M. and J. F. Lee, "A single level low rank IE-QR algorithm for PEC scattering problems using EFIE formulation," IEEE Transactions on Antennas and Propagation, Vol. 52, 2141-2146, Aug. 2004.
doi:10.1109/TAP.2004.832367

26. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, No. 4, 565-589, 2000.
doi:10.1007/PL00005410

27. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, Nov. 2005.

28. Hackbusch, W., "A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices," Computing, Vol. 62, No. 2, 89-108, 1999.
doi:10.1007/s006070050015

29. Bebendorf, M. and W. Hackbusch, "Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L-infinity-coefficients," Numerische Mathematik, Vol. 95, No. 1, 1-28, 2003.
doi:10.1007/s00211-002-0445-6

30. Michielssen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Transactions on Antennas and Propagation, Vol. 44, 1086-1093, Aug. 1996.
doi:10.1109/8.511816

31. Rius, J., J. Parron, A. Heldring, J. Tamayo, and E. Ubeda, "Fast iterative solution of integral equations with method of moments and matrix decomposition algorithm; singular value decomposition," IEEE Transactions on Antennas and Propagation, Vol. 56, 2314-2324, Aug. 2008.
doi:10.1109/TAP.2008.926762

32. Vion, A., R. V. Sabariego, and C. Geuzaine, "A model reduction algorithm for solving multiple scattering problems using iterative methods," IEEE Transactions on Magnetics, Vol. 47, No. 5, 1470-1473, 2011.
doi:10.1109/TMAG.2010.2078800

33. Prakash, V. and R. Mittra, "Characteristic basis function method: A new technique for e±cient solution of method of moment matrix equations," Microwave and Optical Technology Letters, Vol. 36, 95-100, Jan. 2003.
doi:10.1002/mop.10685

34. Delgado, C., M. Catedra, and R. Mittra, "Efficient multilevel approach for the generation of characteristic basis functions for large scatters," IEEE Transactions on Antennas and Propagation, Vol. 56, 2134-2137, Jul. 2008.

35. Shifman, Y. and Y. Leviatan, "Scattering by a groove in a conducting plane --- A PO-MoM hybrid formulation and wavelet analysis," IEEE Transactions on Antennas and Propagation, Vol. 49, 1807-1811, Dec. 2001.
doi:10.1109/8.982463

36. Dai, S. Y., C. M. Zhang, and Z. S. Wu, "Electromagnetic scattering of objects above ground using MRTD/FDTD hybrid method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2187-2196, 2009.
doi:10.1163/156939309790109306

37. Shaeffer, J., "Direct solve of electrically large integral equations for problem sizes to 1M unknowns ," IEEE Transactions on Antennas and Propagation, Vol. 56, 2306-2313, Aug. 2008.
doi:10.1109/TAP.2008.926739

38. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 999-1007, Apr. 2008.
doi:10.1109/TAP.2008.919166

39. Heldring, A., J. Rius, J. Tamayo, J. Parro, and E. Ubeda, "Multiscale compressed block decomposition for fast direct solution of method of moments linear system," IEEE Transactions on Antennas and Propagation, Vol. 59, 526-536, Feb. 2011.
doi:10.1109/TAP.2010.2096385

40. Zhang, Y., M. Taylor, T. Sarkar, H. Moon, and M. Yuan, "Solving large complex problems using a higher-order basis: Parallel incore and out-of-core integral-equation solvers," IEEE Antennas and Propagation Magazine, Vol. 50, No. 4, 13-30, 2008.
doi:10.1109/MAP.2008.4653660

41. García-Donoro, D., Y. Zhang, W. Zhao, T. K. Sarkar, L. E. García-Castillo, and M. Salazar-Palma, "HOBBIES: Higher order basis based integral equation solver with automatic goal oriented optimization," CEFC 2010, Chicago, Illinois, USA, May 2010.

42. Zhang, Y., M. Taylor, T. Sarkar, A. De, M. Yuan, H. Moon, and C. Liang, "Parallel in-core and out-of-core solution of electrically large problems using the RWG basis functions," IEEE Antennas and Propagation Magazine, Vol. 50, No. 5, 84-94, 2008.
doi:10.1109/MAP.2008.4674713

43. Zhang, Y., R. van de Geijn, M. Taylor, and T. Sarkar, "Parallel MoM using higher-order basis functions and PLAPACK in-core and out-of-core solvers for challenging EM simulations ," IEEE Antennas and Propagation Magazine, Vol. 51, No. 5, 42-60, 2009.
doi:10.1109/MAP.2009.5432038

44. Li, L.-W., Y.-J. Wang, and E.-P. Li, "MPI-based parallelized precorrected FFT algorithm for analyzing scattering by arbitrarily shaped three-dimensional objects," Progress In Electromagnetics Research, Vol. 42, 247-259, 2003.
doi:10.2528/PIER03030701

45. Zhang, Y., J. Porter, M. Taylor, and T. Sarkar, "Solving challenging electromagnetic problems using MoM and a parallel out-of-core solver on high performance clusters," IEEE Antennas and Propagation Society International Symposium 2008, AP-S 2008, 1-4, 2008.

46. Harrington, R. F., "Boundary integral formulations for homogenous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.
doi:10.1163/156939389X00016

47. Rao, S. M., C. C. Cha, R. L. Cravey, and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy material of arbitrary thickness," IEEE Transactions on Antennas and Propagation, Vol. 3, No. 1, 1-15, 1989.

48. Zhang, Y. and T. K. Sarkar, Parallel Solution of Integral Equation Based EM Problems in the Frequency Domain, Wiley-IEEE Press, Jul. 2009.

49. Message passing interface forum, http://www.mpi-forum.org/.

50. The ScaLAPACK project, http://www.netlib.org/scalapack/.

51. Woo, A., H.Wang, M. Schuh, and M. Sanders, "EM programmer's notebook. Benchmark radar targets for the validation of computational electromagnetics programs," IEEE Antennas and Propagation Magazine, Vol. 35, 84-89, Feb. 1993.
doi:10.1109/74.210840

52. Heldring, A., J. M. Rius, and J. M. Tamayo, "Direct MoM solution of electrically large problems with N2 complexity," 2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP) , 1-4, 2010.


© Copyright 2014 EMW Publishing. All Rights Reserved