PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 118 > pp. 287-301

A SLOW LIGHT FISHNET-LIKE ABSORBER IN THE MILLIMETER-WAVE RANGE

By M. Navarro-Cia, V. Torres Landivar, M. Beruete, and M. Sorolla Ayza

Full Article PDF (649 KB)

Abstract:
A novel route to achieve a narrowband free-space electromagnetic absorber in any range of the spectrum based on stacked subwavelength hole arrays is proposed. The absorption is obtained by means of a slow light mode inside a fishnet-like engineered structure and exploiting the unavoidable misalignments and bucklings of the free-standing stack. An incoming pulse becomes permanently trapped in the structure due to the near zero group velocity which causes an enhancement of the radiation-structure interaction that leads to a huge increment of losses arising from the finite conductivity of the metal as well as arrangement tolerances. This approach is studied not only by simulation but also experimentally under normal incidence at millimeter wavelengths. Moreover, a basic grasp about the angular dependence of the structure is given by analyzing the 2D dispersion diagram. It shows that this scheme may also display high absorption under oblique incidence for s-polarization (or TE-polarization), whereas $p$-polarization (TM-polarization) would degrade its performance.

Citation:
M. Navarro-Cia, V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A Slow Light Fishnet-Like Absorber in the Millimeter-Wave Range," Progress In Electromagnetics Research, Vol. 118, 287-301, 2011.
doi:10.2528/PIER11053105
http://www.jpier.org/PIER/pier.php?paper=11053105

References:
1. Hau, Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas ," Nature, Vol. 397, No. 6720, 594-598, 1999.
doi:10.1038/17561

2. Krauss, T. F., "Why do we need slow light?," Nature Photon., Vol. 2, No. 8, 448-450, 2008.
doi:10.1038/nphoton.2008.139

3. Tsakmakidis, K. L., A. D. Boardman, and O. Hess, "Trapped rainbow' storage of light in metamaterials," Nature, Vol. 450, No. 7168, 397-401, 2007.
doi:10.1038/nature06285

4. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, No. 7-8, 163-182, 1944.
doi:10.1103/PhysRev.66.163

5. Bouwkamp, C. J., "On the diffraction of electromagnetic waves by circular disks and apertures," Philips Res. Rep., Vol. 5, No. 6, 401-422, 1950.

6. Lewis, A., M. Isaacson, A. Harrontunian, and A. Muray, "Development of a 500Å spatial resolution light microscope: I. Light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy, Vol. 13, No. 3, 227-231, 1984.
doi:10.1016/0304-3991(84)90201-8

7. Ebbesen, T. W., H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays ," Nature, Vol. 391, No. 6668, 667-669, 1998.
doi:10.1038/35570

8. Beruete, M., M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett., Vol. 29, No. 21, 2500-2502, 2004.
doi:10.1364/OL.29.002500

9. Beruete, M., M. Sorolla, I. Campillo, and J. S. Dolado, "Increase of the transmission in cut-off metallic hole arrays," IEEE Microwave Wireless Compon. Lett., Vol. 15, No. 2, 116-118, 2005.
doi:10.1109/LMWC.2004.842852

10. Beruete, M., M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad, and F. J. García-Vidal, "Enhanced millimeter wave transmission through quasioptical subwavelength perforated plates," IEEE Trans. Antennas Propag., Vol. 53, No. 6, 1897-1903, 2005.
doi:10.1109/TAP.2005.848689

11. Lomakin, V. and E. Michielssen, "Transmission of transient plane waves through perfect electrically conducting plates perforated by periodic arrays of subwavelength holes," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 970-984, 2006.
doi:10.1109/TAP.2006.869896

12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

13. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

14. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

15. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

16. Terracher, F. and G. Berginc, "A broadband dielectric microwave absorber with periodic metallization," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 12, 1725-1741, 1999.
doi:10.1163/156939399X00187

17. Engheta, N., "Thin absorbing screens using metamaterial surfaces," IEEE Antennas Propag. Soc. (AP-S) Int. Symp. USNC/URSI Natl. Radio Sci. Mtg., Vol. 2, 392-395, San Antonio, 2002.

18. Bilotti, F., L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave Opt. Technol. Lett., Vol. 48, No. 11, 2171-2175, 2006.
doi:10.1002/mop.21891

19. Kisel, V. N. and A. N. Lagarkov, "Near-perfect absorption by a flat metamaterial plate," Phys. Rev. E, Vol. 76, No. 6, 065601-1-065601-4, 2007.
doi:10.1103/PhysRevE.76.065601

20. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, New York, 1998.

21. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402-1-207402-4, 2008.
doi:10.1103/PhysRevLett.100.207402

22. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, No. 10, 7181-7188, 2008.
doi:10.1364/OE.16.007181

23. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Appl. Phys. Lett., Vol. 95, No. 4, 041106-1-041106-4, 2009.
doi:10.1063/1.3184594

24. Cheng, Q., T. J. Cui, W. X. Jiang, and B. G. Cai, "An omnidi-rectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, No. 6, 063006-1-063006-1, 2010.
doi:10.1088/1367-2630/12/6/063006

25. Beruete, M., M. Sorolla, and I. Campillo, "Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays ," Opt. Express, Vol. 14, No. 12, 5445-5455, 2006.
doi:10.1364/OE.14.005445

26. Navarro-Cía, M., M. Beruete, M. Sorolla, and I. Campillo, "Negative refraction in a prism made of stacked subwavelength hole arrays," Opt. Express, Vol. 16, No. 2, 560-566, 2008.
doi:10.1364/OE.16.000560

27. Beruete, M., M. Navarro-Cía, F. Falcone, I. Campillo, and M. Sorolla, "Single negative birefringence in stacked spoof plasmon metasurfaces by prism experiment," Opt. Lett., Vol. 35, No. 5, 643-645, 2010.
doi:10.1364/OL.35.000643

28. Navarro-Cía, M., M. Beruete, F. J. Falcone, M. Sorolla Ayza, and I. Campillo, "Polarization-tunable negative or positive refraction in self-complementariness-based extraordinary transmission prism," Progress In Electromagnetics Research, Vol. 103, 101-114, 2010.
doi:10.2528/PIER10030108

29. Beruete, M., I. Campillo, M. Navarro-Cía, F. Falcone, and M. Sorolla Ayza, "Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays," IEEE Trans. Antennas Propag., Vol. 55, No. 6, 1514-1521, 2007.
doi:10.1109/TAP.2007.897324

30. Figotin, A. and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E, Vol. 63, No. 6, 066609-1-066609-7, 2001.
doi:10.1103/PhysRevE.63.066609

31. Figotin, A. and I. Vitebsky, "Gigantic transmission band-edge resonance in periodic stacks of anisotropic layers," Phys. Rev. E, Vol. 72, No. 3, 036619-1-036619-12, 2005.
doi:10.1103/PhysRevE.72.036619

32. Yarga, S., K. Sertel, and J. L. Volakis, "Degenerate band edge crystals for directive antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 119-126, 2008.
doi:10.1109/TAP.2007.912955

33. Mumcu, G., K. Sertel, and J. L. Volakis, "Miniature antennas and arrays embedded within magnetic photonic crystals," IEEE Antennas Wirel. Propag. Lett., Vol. 5, No. 1, 168-171, 2006.
doi:10.1109/LAWP.2006.873949

34. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mat., Vol. 9, No. 3, 205-213, 2010.
doi:10.1038/nmat2629

35. Beruete, M., Millimeter-wave extraordinary transmission: Connection to metamaterials and technological applications, Ph.D. Thesis, 2006.

36. Engelen, R. J. P., D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. Lett., Vol. 101, No. 10, 103901-1-103901-4, 2008.
doi:10.1103/PhysRevLett.101.103901

37. Beruete, M., I. Campillo, J. E. Rodríguez-Seco, E. Perea, M. Navarro-Cía, I. J. Núñez-Manrique, and M. Sorolla, "Enhanced gain by double-periodic stacked subwavelength hole array," IEEE Microwave Wireless Compon. Lett., Vol. 17, No. 12, 831-833, 2007.
doi:10.1109/LMWC.2007.910470

38. Yeh, P., "Electromagnetic propagation in birefringent layered media," J. Opt. Soc. Amer., Vol. 69, No. 5, 742-756, 1979.
doi:10.1364/JOSA.69.000742

39. Mary, A., S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, "Theory of negative-refractive-index response of double-fishnet structures," Phys. Rev. Lett., Vol. 101, No. 10, 103902-1-103902-4, 2008.
doi:10.1103/PhysRevLett.101.103902

40. Beruete, M., M. Navarro-Cía, M. Sorolla, and I. Campillo, "Negative refraction through an extraordinary transmission left-handed metamaterial slab," Phys. Rev. B, Vol. 79, No. 19, 195107-1-195107-, 2009.
doi:10.1103/PhysRevB.79.195107

41. Beruete, M., M. Navarro-Cía, and M. Sorolla, "Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial ," New J. Phys., Vol. 12, No. 6, 063037-1-063037-15, 2010.
doi:10.1088/1367-2630/12/6/063037

42. Beruete, M., M. Navarro-Cía, and M. Sorolla, "High numerical aperture and low-loss negative refraction based on the fishnet rich anisotropy," Photon Nanostruct: Fundam Appl., 200, doi: 10.1016/j.photonics.2011.04.009.


© Copyright 2014 EMW Publishing. All Rights Reserved