Vol. 119

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Terahertz Metamaterial Modulators Based on Absorption

By Hao Zhou, Fei Ding, Yi Jin, and Sailing He
Progress In Electromagnetics Research, Vol. 119, 449-460, 2011


Metamaterial absorbers can perfectly absorb an incident wave in a narrow frequency band. In this paper, metamaterial absorbers are used to construct a terahertz modulator. By controlling the carrier density in the n-doped semiconductor spacer between a patterned metallic superstructure and a metallic ground with different applied voltage bias, the absorption varies sensitively, and the reflected wave amplitude acting as the modulated signal can be strongly modulated. Two types of modulators are investigated, one of which possesses an array of metallic crosses as the superstructure, and the other has a complementary superstructure. Compared with the former, the latter may give a better modulation performance.


Hao Zhou, Fei Ding, Yi Jin, and Sailing He, "Terahertz Metamaterial Modulators Based on Absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.


    1. Pendry, J. B., A. T. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.

    2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors, and enhanced non-linear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2084, 1999.

    3. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.

    4. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.

    5. Enoch, S., G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902, 2002.

    6. Huang, X. Q., Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials," Nature Materials, Vol. 10, 582-586, 2011.

    7. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section ," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.

    8. Zhou, H., S. Qu, Z. Pei, Y. Yang, J. Zhang, J. Wang, H. Ma, C. Gu, X.-H. Wang, and Z. Xu, "A high-directive patch antenna based on all-dielectric near-zero-index metamaterial superstrates," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1387-1396, 2010.

    9. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.

    10. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.

    11. Chen, H. Y., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature Materials, Vol. 9, 387-396, 2010.

    12. Yu, G.-X., T.-J. Cui, W. Xiang, J. Xin, M. Yang, Q. Cheng, and Y. Hao, "Transformation of different kinds of electromagnetic waves using metamaterials ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 583-592, 2009.

    13. Mei, Z. L., J. Bai, and T. J. Cui, "Illusion devices with quasi-conformal mapping," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2561-2573, 2010.

    14. O'Hara, J. F., et al., "Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations," Opt. Express, Vol. 16, No. 3, 1786-1795, 2008.

    15. Singh, R., C. Rockstuhl, C. Menzel, T. P. Meyrath, M. He, H. Giessen, F. Lederer, and W. Zhang, "Spiral-type terahertz antennas and the manifestation of the Mushiake principle," Opt. Express, Vol. 17, No. 12, 9971-9980, 2009.

    16. Singh, R., et al., "Terahertz metamaterial with asymmetric transmission," Physical Review B, Vol. 80, No. 15, 153104, 2009.

    17. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.

    18. Landy, N. I., C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B, Vol. 79, 125104, 2009.

    19. Wang, J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.

    20. Tao, H., et al., "A dual band terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 43, 225102, 2010.

    21. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle ," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.

    22. Gu, C., S. Qu, Z. Pei, H. Zhou, J. Wang, B.-Q. Lin, Z. Xu, P. Bai, and W.-D. Peng, "A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.

    23. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

    24. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," J. Opt. Soc. Am. B, Vol. 27, 498-504, 2010.

    25. Chen, H. T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, 567-600, 2006.

    26. Padilla, W. J., et al., "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Physical Review Letters, Vol. 96, No. 10, 107401, 2006.

    27. Chen, H. T., et al., "Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices," Opt. Lett., Vol. 32, 1620-1622, 2007.

    28. Chen, H. T., et al., "Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves," Appl. Phys. Lett., Vol. 93, 091117, 2008.

    29. Chen, H. T., et al., "Experimental demonstration of frequency-agile terahertz metamaterials," Nature Photon., Vol. 2, 295-298, 2008.

    30. Chen, H. T., et al., "A metamaterial solid-state terahertz phase modulator," Nature Photon., Vol. 3, 148-151, 2009.

    31. Chen, H. T., et al., "Complementary planar terahertz metamaterials," Opt. Express, Vol. 15, No. 3, 1084-1095, 2007.

    32. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance ," Phys. Rev. Lett., Vol. 104, 207403, 2010.

    33. Hao, J. M., L. Zhou, and M. Qiu, "Nearly total absorption of light and heat generation by plasmonic metamaterials," Phys. Rev. B, Vol. 83, 165107, 2011.

    34. Liu, N., L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials," Adv. Mater., Vol. 20, 3859-3865, 2008.

    35. Li, T., H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express, Vol. 14, 11155-11163, 2006.

    36. Liu, N., H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater., Vol. 19, 3628-3632, 2007.

    37. Paul, O., et al., "Polarization-independent active metamaterial for high-frequency terahertz modulation," Opt. Express, Vol. 17, No. 2, 819-827, 2009.