PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 120 > pp. 439-457

CONVERGENCE STUDY OF A NON-STANDARD SCHWARZ DOMAIN DECOMPOSITION METHOD FOR FINITE ELEMENT MESH TRUNCATION IN ELECTRO-MAGNETICS

By R. Fernandez-Recio, L. E. Garcia-Castillo, S. Llorente-Romano, and I. Gomez-Revuelto

Full Article PDF (434 KB)

Abstract:
A convergence study of a non-standard Schwarz domain decomposition method for finite element mesh truncation in electromagnetics is carried out. The original infinite domain is divided into two overlapping domains. The interior finite domain is modeled by finite elements and the exterior infinite domain by an integral equation representation of the field. A numerical study of the spectrum of the iteration matrix for non-convex mesh truncation boundaries is performed. The projection of the error between two consecutive iterations onto the eigenvector space of the iteration matrix is performed. The numerical results explain the observed convergence behavior of the Schwarz iterations.

Citation:
R. Fernandez-Recio, L. E. Garcia-Castillo, S. Llorente-Romano, and I. Gomez-Revuelto, "Convergence Study of a Non-Standard Schwarz Domain Decomposition Method for Finite Element Mesh Truncation in Electro-Magnetics," Progress In Electromagnetics Research, Vol. 120, 439-457, 2011.
doi:10.2528/PIER11072103
http://www.jpier.org/PIER/pier.php?paper=11072103

References:
1. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., 2002.

2. Salazar-Palma, M., T. K. Sarkar, L. E. García-Castillo, T. Roy, and A. R. Djordjevic, Iterative and Self-Adaptive Finite-Elements in Electromagnetic Modeling, Artech House Publishers, Inc., Norwood, MA, 1998.

3. Ping, X. W. and T.-J. Cui, "The factorized sparse approximate inverse preconditioned conjugate gradient algorithm for finite element analysis of scattering problems," Progress In Electromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703

4. Tian, J., Z.-Q. Lv, X.-W. Shi, L. Xu, and F. Wei, "An efficient approach for multifrontal algorithm to solve non-positive-definite finite element equations in electromagnetic problems," Progress In Electromagnetics Research, Vol. 95, 121-133, 2009.
doi:10.2528/PIER09070207

5. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, 1993.
doi:10.1109/9780470544631

6. Wang, S., X. Guan, D.-W. Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higher-order MoM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

7. Liu, Z.-L. and J. Yang, "Analysis of electromagnetic scattering with higher-order moment method and NURBS model," Progress In Electromagnetics Research, Vol. 96, 83-100, 2009.
doi:10.2528/PIER09071704

8. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

9. García-Castillo, L. E., I. Gómez-Revuelto, F. Sáez de Adana, and M. Salazar-Palma, "A finite element method for the analysis of radiation and scattering of electromagnetic waves on complex environments," Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 2--5, 637-655, Feb. 2005.
doi:10.1016/j.cma.2004.05.025

10. Fernández-Recio, R., L. E. García-Castillo, I. Gómez-Revuelto, and M. Salazar-Palma, "Fully coupled hybrid FEM-UTD method using NURBS for the analysis of radiation problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 774-783, Mar. 2008.
doi:10.1109/TAP.2008.916878

11. Fernández-Recio, R., L. E. Garcíá-Castillo, I. Gómez-Revuelto, and M. Salazar-Palma, "Fully coupled multi-hybrid FEM-PO/PTD-UTD method for the analysis of scattering and radiation problems," IEEE Transactions on Magnetics, Vol. 43, 1341-1344, Apr. 2007.
doi:10.1109/TMAG.2007.892416

12. Vouvakis, M. N., K. Zhao, S. M. Seo, and J.-F. Lee, "A domain decomposition approach for non-conformal couplings between finite and boundary elements for unbounded electromagnetic problems in R3," Journal of Computational Physics, Vol. 225, No. 1, 975-994, 2007, doi:10.1016/j.jcp.2007.01.014.
doi:10.1016/j.jcp.2007.01.014

13. Paul, P. and J. P. Webb, "Balancing boundary and discretization errors using an iterative absorbing boundary condition," IEEE Transactions on Magnetics, Vol. 44, 1362-1365, Jun. 2008.
doi:10.1109/TMAG.2007.916488

14. Paul, P. and J. P. Webb, "Reducing computational costs using a multi-region finite element method for electromagnetic scattering," IET Microwaves, Antennas & Propagation, Vol. 2, No. 5, 427-433, 2008, doi:10.1049/iet-map:20070227.
doi:10.1049/iet-map:20070227

15. Zhao, K., V. Rawat, and J.-F. Lee, "A domain decomposition method for electromagnetic radiation and scattering analysis of multi-target problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 2211-2221, Aug. 2008.
doi:10.1109/TAP.2008.926774

16. Wang, X., Z. Peng, and J.-F. Lee, Simulation of the mutual couplings among multiple antennas on large platform using multi-region multi-solver domain decomposition, IEEE Antennas and Propagation Society International Symposium Digest, 1-4, Institute of Electrical and Electronics Engineer (IEEE), Toronto, Canada, USA, Jul. 2010.

17. Alfonzetti, S., G. Borzi, and N. Salerno, "Iteratively-improved Robin boundary conditions for the finite element solution of scattering problems in unbounded domains," International Journal for Numerical Methods in Engineering, Vol. 42, 601-629, 1998.
doi:10.1002/(SICI)1097-0207(19980630)42:4<601::AID-NME373>3.0.CO;2-O

18. Fernández-Recio, R., L. E. Garcia-Castillo, I. Gómez-Revuelto, and M. Salazar-Palma, Convergence study of a non-standard schwarz domain decomposition method for finite element mesh truncation in electromagnetics, International Conference on Electromagnetics in Advanced Applications (ICEAA07), Torino (Italia), Sep. 2007. Invited paper to the Special Session ``Numerical Methods in Electromagnetics".

19. García-Castillo, L. E. and M. Salazar-Palma, "Second-order Nédélec tetrahedral element for computational electromagnetics," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 13, 261-287, John Wiley & Sons, Inc., Mar.--Jun.2000.

20. Lehoucq, R. B., D. C. Sorensen, and C. Yang, ARPACK Users'Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, 1997, http://people.scs.fsu.edu/~burkardt/pdf/arpack.pdf.


© Copyright 2014 EMW Publishing. All Rights Reserved