PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 122 > pp. 389-411

OPTIMIZED LOCAL SUPERPOSITION IN WIRELESS SENSOR NETWORKS WITH T-AVERAGE-MUTUAL-COHERENCE

By D. Guo, X. Qu, L. Huang, and Y. Yao

Full Article PDF (516 KB)

Abstract:
Compressed sensing (CS) is a new technology for recovering sparse data from undersampled measurements. It shows great potential to reduce energy for sensor networks. First, a basic global superposition model is proposed to obtain the measurements of sensor data, where a sampling matrix is modeled as the channel impulse response (CIR) matrix while the sparsifying matrix is expressed as the distributed wavelet transform (DWT). However, both the sampling and sparsifying matrixes depend on the location of sensors, so this model is highly coherent. This violates the assumption of CS and easily produces high data recovery error. In this paper, in order to reduce the coherence, we propose to control the transmit power of some nodes with the help of t-average-mutual-coherence, and recovery quality are greatly improved. Finally, to make the approach more realistic and energy-efficient, the CIR superposition is restricted in local clusters. Two key parameters, the radius of power control region and the radius of local clusters, are optimized based on the coherence and resource consideration in sensor networks. Simulation results demonstrate that the proposed scheme provides a high recovery quality for networked data and verify that t-average-mutual-coherence is a good criterion for optimizing the performance of CS in our scenario.

Citation:
D. Guo, X. Qu, L. Huang, and Y. Yao, "Optimized Local Superposition in Wireless Sensor Networks with T-Average-Mutual-Coherence," Progress In Electromagnetics Research, Vol. 122, 389-411, 2012.
doi:10.2528/PIER11072605
http://www.jpier.org/PIER/pier.php?paper=11072605

References:
1. Heinzelman, W. B., A. P. Chandrakasan, and H. Balakrishnan, "An application-specific protocol architecture for wireless microsensor networks," IEEE Trans. Wireless Commun., Vol. 1, No. 4, 660-670, 2002.
doi:10.1109/TWC.2002.804190

2. Donoho, D. L., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

3. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., Vol. 25, No. 2, 21-30, 2008.
doi:10.1109/MSP.2007.914731

4. Haupt, J., W. U. Bajwa, M. Rabbat, and R. Nowak, "Compressed sensing for networked data," IEEE Signal Process. Mag., Vol. 25, No. 2, 92-101, 2008.
doi:10.1109/MSP.2007.914732

5. Duarte, M. F., S. Sarvotham, D. Baron, M. B. Wakin, and R. G. Baraniuk, "Distributed compressed sensing of jointly sparse signals," 39th Asilomar Conf. Signals, Systems and Computers, 1537-1541, 2005.

6. Bajwa, W., J. Haupt, A. Sayeed, and R. Nowak, "Compressive wireless sensing," 5th Int. Conf. Information Processing in Sensor Networks, 134-142, 2006.

7. Lee, S., S. Pattem, M. Sathiamoorthy, B. Krishnamachari, and A. Ortega, "Spatially-localized compressed sensing and routing in multi-hop sensor networks ," 3rd Int. Conf. on Geo. Sensor Networks, 11-20, 2009.

8. Jia, M., L. Husheng, and H. Zhu, "Sparse event detection in wireless sensor networks using compressive sensing," 43rd Annu. Conf. Information Sciences and Systems, 181-185, 2009.

9. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

10. Wei, S.-J., X.-L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

11. Zhang, Y., L.Wu, B. Peterson, and Z. Dong, "A two-level iterative reconstruction method for compressed sensing MRI," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1081-1091, 2011.
doi:10.1163/156939311795762024

12. Elad, M., Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer Verlag, 2010.

13. Elad, M., "Optimized projections for compressed sensing," IEEE Trans. Signal Process., Vol. 55, No. 2, 5695-5702, 2007.
doi:10.1109/TSP.2007.900760

14. Gastpar, M. and M. Vetterli, "Power, spatio-temporal bandwidth, and distortion in large sensor networks," IEEE J. Sel. Areas Commun., Vol. 23, No. 4, 745-754, 2005.
doi:10.1109/JSAC.2005.843542

15. Guo, D., X. Qu, L. Huang, and Y. Yao, "Sparsity-based spatial interpolation in wireless sensor networks," Sensors, Vol. 11, No. 3, 2385-2407, 2011.
doi:10.3390/s110302385

16. Quer, G., R. Masiero, D. Munaretto, M. Rossi, J. Widmer, and M. Zorzi, "On the interplay between routing and signal representation for compressive sensing in wireless sensor networks," Information Theory and Applications Workshop, 206-215, 2009.
doi:10.1109/ITA.2009.5044947

17. Andersen, J. B., T. S. Rappaport, and S. Yoshida, "Propagation measurements and models for wireless communications channels," IEEE Commun. Mag., Vol. 33, No. 1, 42-49, 1995.
doi:10.1109/35.339880

18. Gay-Fernandez, J. A., M. Garcia Sanchez, I. Cui~nas, A. V. Alejos, J. G. Sanchez, and J. L. Miranda-Sierr, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.
doi:10.2528/PIER10040806

19. Patwari, N. and S. K. Kasera, "Robust location distinction using temporal link signatures," 13th ACM Int. Conf. on Mobile Computing and Networking, 111-122, 2007.

20. Alsehaili, M., S. Noghanian, A. R. Sebak, and D. A. Buchanan, "Angle and time of arrival statistics of a three dimensional geometrical scattering channel model for indoor and outdoor propagation environments," Progress In Electromagnetics Research, Vol. 109, 191-209, 2010.
doi:10.2528/PIER10081106

21. Chen, B., R. Jiang, T. Kasetkasem, and P. K. Varshney, "Channel aware decision fusion in wireless sensor networks," IEEE Trans. Signal Process., Vol. 52, No. 12, 3454-3458, 2004.
doi:10.1109/TSP.2004.837404

22. Wagner, R. S., R. G. Baraniuk, S. Du, D. B. Johnson, and A. Cohen, "An architecture for distributed wavelet analysis and processing in sensor networks," 5th Int. Conf. Information Processing in Sensor Networks, 243-250, 2006.

23. Donoho, D., V. Stodden, and Y. Tsaig, Sparselab [Online]. Available: http://sparselab.stanford.edu/.

24. Mitilineos, S. A. and S. C. A. Thomopoulos, "Positioning accuracy enhancement using error modeling via a polynomial approximation approach ," Progress In Electromagnetics Research, Vol. 102, 49-64, 2010.
doi:10.2528/PIER10010102

25. Reza, A. W., S. M. Pillai, K. Dimyati, and K. G. Tan, "A novel positioning system utilizing zigzag mobility pattern," Progress In Electromagnetics Research, Vol. 106, 263-278, 2010.
doi:10.2528/PIER10060904

26. Mitilineos, S. A., D. M. Kyriazanos, O. E. Segou, J. N. Goufas, and S. C. A. Thomopoulos, "Indoor localisation with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.
doi:10.2528/PIER10062801


© Copyright 2014 EMW Publishing. All Rights Reserved