PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 120 > pp. 309-326

THEORETICAL STUDY OF MICROWAVE TRANSISTOR AMPLIFIER DESIGN IN THE CONJUGATELY CHARACTERISTIC-IMPEDANCE TRANSMISSION LINE (CCITL) SYSTEM USING A BILINEAR TRANSFORMATION APPROACH

By R. Silapunt and D. Torrungrueng

Full Article PDF (941 KB)

Abstract:
Conjugately characteristic-impedance transmission lines (CCITLs) are a class of transmission lines possessing conjugately characteristic impedances (Z0±) for waves propagating in the opposite direction. A typical Z0 uniform transmission line is a special case of CCITLs whose argument of Z0± is equal to 0o. This paper aims to generalize the CCITL system by demonstrating a theoretical study of CCITLs and their applications in the microwave transistor amplifier design. It is found that the bilinear transformation plays an important role in transforming circles in the reflection coefficient Г0-plane in the Z0 system to the Г-plane in the CCITL system. In addition, Meta-Smith charts, a graphical tool developed for solving problems in the CCITL system, are employed to design matching networks to achieve desired amplifier properties. Results show that stability regions on Meta-Smith charts can be determined, and source and load reflection coefficients can be selected properly to obtain desired operating power gain. In addition, an example shows that Meta-Smith charts offer a simple approach for matching network design using open-circuited single-stub shunt tuners.

Citation:
R. Silapunt and D. Torrungrueng, "Theoretical Study of Microwave Transistor Amplifier Design in the Conjugately Characteristic-Impedance Transmission Line (Ccitl) System Using a Bilinear Transformation Approach," Progress In Electromagnetics Research, Vol. 120, 309-326, 2011.
doi:10.2528/PIER11080504
http://www.jpier.org/PIER/pier.php?paper=11080504

References:
1. Smith, P. H., Electronic Applications of the Smith Chart, NoblePublishing, Georgia, 2000.

2. Wu, Y., H. Y. Huang, and Y. N. Liu, "An extended omnipotent Smith chart with active parameters," Microwave and Optical Microwave and Optical Technology Letters, Vol. 50, No. 4, 896-899, 2008.
doi:10.1002/mop.23229

3. Wu, Y. and Y. Liu, "Standard Smith chart approach to solve exponential tapered nonuniform transmission line problems," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11--12, 1639-1646, 2008.
doi:10.1163/156939308786389997

4. Roy, N. and V. K. Devabhaktuni, "A new computer aided LNA design approach targeting constant noise-figure and maximum gain," PIERS Online, Vol. 3, No. 8, 1321-1325, 2007.
doi:10.2529/PIERS070416143017

5. Lindell, I. V., M. E. Valtonen, and A. H. Sihvola, "Theory of nonreciprocal and nonsymmetric uniform transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 2, 291-297, 1994.
doi:10.1109/22.275260

6. Lindell, I. V. and A. H. Sihvola, "Duality transformation for nonreciprocal and nonsymmetric transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 129-131, 1997.
doi:10.1109/22.552042

7. Torrungrueng, D. and C. Thimaporn, "A generalized ZY Smith chart for solving nonreciprocal uniform transmission-line problems," Microwave and Optical Technology Letters, Vol. 40, No. 1, 57-61, 2004.
doi:10.1002/mop.11284

8. Hosseini, F., M. Khalaj-Amir Hosseini, and M. Yazdani, "A miniaturized Wilkinson power divider using nonuniform transmission line," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 917-924, 2009.
doi:10.1163/156939309788355243

9. Torrungrueng, D. and C. Thimaporn, "Application of the T-chart for solving exponentially tapered lossless nonuniform transmission-line problems," Microwave and Optical Technology Letters, Vol. 45, No. 5, 402-406, 2005.
doi:10.1002/mop.20836

10. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, New Jersey, 2005.

11. Khalaj-amirhosseini, M., "Analysis of coupled nonuniform transmission lines using short exponential or linear sections," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 299-312, 2007.
doi:10.1163/156939307779367378

12. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 2, 68-70, Nov. 2004.
doi:10.1109/LMWC.2003.822563

13. Horii, Y., C. Caloz, and T. Itoh, "Super-compact multilayered left-handed transmission line and diplexer application," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1527-1534, Apr. 2005.
doi:10.1109/TMTT.2005.845189

14. Antonini, G., "A general framework for the analysis of metamaterial transmission lines," Progress In Electromagnetics Research B, Vol. 20, 353-373, 2010.
doi:10.2528/PIERB10030601

15. Wang, W., C. Liu, L. Yan, and K. Huang, "A novel power divider based on dual-composite right/left handed transmission line," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8--9, 1173-1180, 2009.

16. Mirzavand, R., B. Honarbakhsh, A. Abdipour, and A. Tavakoli, "Metamaterial-based phase shifters for ultra wide-band applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1489-1496, 2009.
doi:10.1163/156939309789476446

17. Choi, J. and C. Seo, "High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

18. Güne, F. and C. Bilgin, "A generalized design procedure for a microwave amplifier: A typical application example," Progress In Electromagnetics Research B, Vol. 10, 1-19, 2008.

19. Demirel, S., F. Gunes, and U. Ozkaya, "Design of an ultra-wideband, low-noise, amplifier using a single transistor: A typical application example," Progress In Electromagnetics Research B, Vol. 16, 371-387, 2009.
doi:10.2528/PIERB09062302

20. Russo, I., L. Boccia, G. Amendola, and G. Di Massa, "Simplified design flow of quasi-optical slot amplifiers," Progress In Electromagnetics Research, Vol. 96, 347-359, 2009.
doi:10.2528/PIER09072807

21. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative gm cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 619-630, 2010.
doi:10.1163/156939310791036412

22. Lee, M.-W., S.-H. Kam, Y.-S. Lee, and Y.-H. Jeong, "A highly efficient three-stage Doherty power amplifier with flat gain for WCDMA applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2537-2545, 2010.
doi:10.1163/156939310793675619

23. Torrungrueng, D. and S. Lamultree, "Equivalent graphical solutions of terminated conjugately characteristic impedance transmission lines with non-negative and corresponding negative characteristic resistances," Progress In Electromagnetics Research, Vol. 92, 137-151, 2009.
doi:10.2528/PIER09031001

24. Torrungrueng, D., Meta-Smith Charts and Their Potential Applications, Morgan and Claypool, California, 2010.

25. Gonzalez, G., Microwave Transistor Amplifiers, 2nd Ed., Prentice-Hall, New Jersey, 1997.

26. Silapunt, R. and D. Torrungrueng, An analysis of two-port networks in the system of conjugately characteristic-impedance transmission lines (CCITLs), Proc. of the 2005 EECON Conference, Phuket, Thailand, 2005.

27. Zappelli, L., "On the definition of the generalized scattering matrix of a lossless radial line," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 6, 1654-1662, 2004.
doi:10.1109/TMTT.2004.828470

28. Silapunt, R. and D. Torrungrueng, A comparison of two-port network in the CCITL system, IEEE AP-S International Symposium, 1197-1200, New Mexico, USA, 2006.

29. Heidari, A. A., M. Heyrani, and M. Nakhkash, "A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications," Progress In Electromagnetics Research, Vol. 92, 195-208, 2009.
doi:10.2528/PIER09032401

30. Li, X., Y.-J. Yang, L. Yang, S.-X. Gong, T. Hong, X. Chen, Y.-J. Zhang, X. Tao, Y. Gao, K. Ma, and X.-L. Liu, "A novel unequal Wilkinson power divider for dual-band operation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1012-1022, 2010.

31. Li, J. C., J. C. Nan, X. Y. Shan, and Q. F. Yan, "A novel modified dual-frequency Wilkinson power divider with open stubs and optional isolation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2223-2235, 2010.
doi:10.1163/156939310793699163

32. Silapunt, R. and D. Torrungrueng, "Stability considerations for the design of microwave transistor amplifiers in the CCITL system," Proc. of the 2006 ECTI-CON, 115-118, 2006.

33. Silapunt, R. and D. Torrungrueng, Stability considerations of potentially unstable broadband microwave transistor amplifiers in the CCITL system, Mediterranean Microwave Symposium, 261-264, Budapest, Hungary, 2006.


© Copyright 2014 EMW Publishing. All Rights Reserved