PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 120 > pp. 293-307

BENDING ANALYSIS OF A DUAL-CORE PHOTONIC CRYSTAL FIBER

By D. Chen, G. Hu, X. A. Liu, B. Peng, and G. Wu

Full Article PDF (818 KB)

Abstract:
A dual-core photonic crystal fiber (DC-PCF) is proposed, and bending characteristics of the DC-PCF are investigated. Two fiber cores are employed in the cross-section of the DC-PCF, which result in a mode coupling between the two fiber cores when the light propagates inside the DC-PCF. The mode coupling between two fiber cores of the DC-PCF is sensitive to the directional bending of the DC-PCF which essentially provides a method to achieve bending sensing. A DC-PCF-based bending sensor is proposed by injecting a broadband light into one fiber core of the DC-PCF on one side and detecting output spectrum from another fiber core of the DC-PCF on the other side. In our simulations, a parabola curve which shows the relationship between the wavelength shift of the transmission spectrum of the DC-PCF-based bending sensor and the bending curvature of the DC-PCF is presented.

Citation:
D. Chen, G. Hu, X. A. Liu, B. Peng, and G. Wu, "Bending Analysis of a Dual-Core Photonic Crystal Fiber," Progress In Electromagnetics Research, Vol. 120, 293-307, 2011.
doi:10.2528/PIER11080909
http://www.jpier.org/PIER/pier.php?paper=11080909

References:
1. Knight, J. C., J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic band gap guidance in optical fibers," Science, Vol. 282, 1476-1478, 1998.
doi:10.1126/science.282.5393.1476

2. Knight, J. C. and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science, Vol. 296, 276-277, 2002.
doi:10.1126/science.1070033

3. Knight, J. C., "Photonic crystal fibers," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940

4. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309

5. Makoui, S., M. Savadi-Oskouei, A. Rostami, and Z. D. Koozehkanani, "Dispersion fltened optical fiber design for large bandwidth and high-speed optical communications using optimization technique," Progress In Electromagnetics Research B, Vol. 13, 21-40, 2009.
doi:10.2528/PIERB08110202

6. Wu, J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W.-L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimension elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.2528/PIERL09061804

7. Chau, Y.-F., C.-Y. Liu, H.-H. Yeh, and D. P. Tsai, "A comparative study of high birefringence and low confinement loss photonic crystal fiber employing elliptical air holes in fiber cladding with tetragonal lattice," Progress In Electromagnetics Research B, Vol. 22, 39-52, 2010.
doi:10.2528/PIERB10042405

8. Karimi, M. and F. E. Seraji, "Effects of geometry on amplification property of erbium doped holey fiber amplifiers using scalar effective index method," Progress In Electromagnetics Research B, Vol. 19, 385-403, 2010.
doi:10.2528/PIERB09122201

9. Chen, D. and H. Chen, "Highly birefringent low-loss terahertz waveguide: Elliptical polymer tube," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11--12, 1553-1562, 2010.
doi:10.1163/156939310792149623

10. Chen, D., M.-L. V. Tse, and H.-Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.
doi:10.2528/PIER10042706

11. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, No. 18, 1325-1327, 2000.
doi:10.1364/OL.25.001325

12. Steel, M. J. and R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett., Vol. 26, No. 4, 229-231, 2001.
doi:10.1364/OL.26.000229

13. Chen, D. and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightw. Technol., Vol. 25, No. 9, 2700-2705, 2007.
doi:10.1109/JLT.2007.902114

14. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, No. 4, 185-187, 2007.
doi:10.1109/LPT.2006.890040

15. Beltrán-Mejía, F., G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. Cordeiro, "Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes," Opt. Lett., Vol. 35, No. 4, 544-546, 2010.
doi:10.1364/OL.35.000544

16. Chen, D. and G. Wu, "Highly birefringent photonic crystal fiber based on a double-hole unit," Appl. Opt., Vol. 49, No. 9, 1682-1686, 2010.
doi:10.1364/AO.49.001682

17. Singh, V. and D. Kumar, "Modal dispersion characteristics of a Bragg fiber having plasma in the cladding regions," Progress In Electromagnetics Research, Vol. 89, 167-181, 2009.
doi:10.2528/PIER08112702

18. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express, Vol. 11, 843-852, 2003.
doi:10.1364/OE.11.000843

19. Yang, S., Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express, Vol. 14, 3015-3023, 2006.
doi:10.1364/OE.14.003015

20. Wong, G. K. L., L. Zang, M. S. Kang, and P. St. J. Russell, "Measurement of group-velocity dispersion of Bloch modes in photonic-crystal-fiber rocking filters," Opt. Lett., Vol. 35, No. 23, 3982-3984, 2010.
doi:10.1364/OL.35.003982

21. Birks, T. A., J. C. Knight, and P. St. J. Russel, "Endlessly single-mode photonic crystal fiber," Opt. Lett., Vol. 22, No. 13, 961-963, 1997.
doi:10.1364/OL.22.000961

22. Saitoh, K. and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 15, No. 10, 1384-1340, 2003.
doi:10.1109/LPT.2003.818215

23. Kubota, H., S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 16, 182-184, 2004.
doi:10.1109/LPT.2003.819415

24. Hu, D. J. J., P. Shum, C. Lu, X. Yu, G. Wang, and G. Ren, "Holey fiber design for single-polarization single-mode guidance," Appl. Opt., Vol. 48, No. 20, 4038-4043, 2009.
doi:10.1364/AO.48.004038

25. Wang, L., S. Lou, W. Chen, and H. Li, "Design of a single-polarization single-mode photonic crystal fiber with a near-Gaussian mode field and wide bandwidth," Appl. Opt., Vol. 49, No. 32, 6196-6120, 2010.
doi:10.1364/AO.49.006196

26. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, No. 23, 15365-15376, 2007.
doi:10.1364/OE.15.015365

27. Welch, M. G., K. Cook, R. A. Correa, F. Gérôme, W. J. Wadsworth, A. V. Gorbach, D. V. Skryabin, and J. C. Knight, "Solitons in hollow core photonic crystal fiber: Engineering nonlinearity and compressing pulses," J. Lightwave Technol., Vol. 27, No. 11, 1644-1652, 2009.
doi:10.1109/JLT.2009.2019731

28. Bao, H. and M. Gu, "Reduction of self-phase modulation in double-clad photonic crystal fiber for nonlinear optical endoscopy," Opt. Lett., Vol. 34, No. 2, 148-150, 2009.
doi:10.1364/OL.34.000148

29. Wang, Y., X. Zhang, X. Ren, L. Zheng, X. Liu, and Y. Huang, "Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss," Appl. Opt., Vol. 49, No. 3, 292-297, 2010.
doi:10.1364/AO.49.000292

30. Raja, R. V. J., A. Husakou, J. Hermann, and K. Porsezian, "Supercontinuum generation in liquid-filled photonic crystal fiber with slow nonlinear response," J. Opt. Soc. Am. B, Vol. 27, No. 9, 1763-1768, 2010.
doi:10.1364/JOSAB.27.001763

31. Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett., Vol. 28, No. 6, 393-395, 2003.
doi:10.1364/OL.28.000393

32. Michaille, L., D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, "Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area," Opt. Lett., Vol. 33, No. 1, 71-73, 2008.
doi:10.1364/OL.33.000071

33. Nodop, D., C. Jauregui, D. Schimpf, J. Limpert, and A. Tünermann, "Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber," Opt. Lett., Vol. 34, No. 22, 3499-3501, 2009.
doi:10.1364/OL.34.003499

34. Lefrançois, S., K. Kieu, Y. Deng, J. D. Kafka, and F. W. Wise, "Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber," Opt. Lett., Vol. 35, No. 10, 1569-1571, 2010.
doi:10.1364/OL.35.001569

35. Baumgartl, M., F. Jansen, F. Stutzki, C. Jauregui, B. Ortaç, J. Limpert, and A. Tünnermann, "High average and peak power femtosecond large-pitch photonic-crystal-fiber laser," Opt. Lett., Vol. 36, No. 2, 244-246, 2011.
doi:10.1364/OL.36.000244

36. Astar, W., C.-C. Wei, Y.-J. Chen, J. Chen, and G. M. Carter, "Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF," Opt. Express, Vol. 16, No. 16, 12039-12049, 2008.
doi:10.1364/OE.16.012039

37. Matsui, T., K. Nakajima, and C. Fukai, "Applicability of photonic crystal fiber with uniform air-hole structure to high-speed and wide-band transmission over conventional telecommunication bands," J. Lightwave Technol., Vol. 27, No. 23, 5410-5416, 2009.
doi:10.1109/JLT.2009.2030901

38. Wang, J., H. Miao, S. Song, and R. Zheng, "Study on compensating methods of transmission system at 40 Gb/s in photonic crystal fiber," Chin. Opt. Lett., Vol. 8, No. 5, 471-473, 2010.
doi:10.3788/COL20100805.0471

39. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, No. 7, 818-823, 2003.
doi:10.1364/OE.11.000818

40. Liu, X., X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, "Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg grating and photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 17, No. 8, 1626-1628, 2005.
doi:10.1109/LPT.2005.851024

41. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, No. 6, 437-439, 2007.
doi:10.1002/lapl.200710003

42. Fang, X., M. Hu, C. Xie, Y. Song, L. Chai, and C. Wang, "High pulse energy mode-locked multicore photonic crystal fiber laser," Opt. Lett., Vol. 36, No. 6, 1005-1007, 2011.
doi:10.1364/OL.36.001005

43. Zhu, Z. and T. G. Brown, "Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B, Vol. 21, No. 2, 249-257, 2004.
doi:10.1364/JOSAB.21.000249

44. Kudlinski, A., G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, "White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers," Opt. Lett., Vol. 34, No. 23, 3631-3633, 2009.
doi:10.1364/OL.34.003631

45. Dudley, J. M. and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photonics, Vol. 3, 85-90, 2009.
doi:10.1038/nphoton.2008.285

46. Hooper, L. E., P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, "Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion," Opt. Express, Vol. 19, No. 6, 4902-4907, 2011.
doi:10.1364/OE.19.004902

47. Chen, D., G. Hu, M. L. V. Tse, H. Y. Tam, and L. Gao, "Dual-core side-hole fiber for pressure sensing based on intensity detection," Journal of Electromagnetic Waves Applications, Vol. 25, No. 5--6, 775-784, 2011.
doi:10.1163/156939311794827140

48. Chen, D., M.-L. V. Tse, C. Wu, G. Hu, and H.-Y. Tam, "Highly birefringent four-hole fiber for pressure sensing,", Vol. 114, 145-158, 2011.

49. Dobb, H., K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Eletron. Lett., Vol. 40, No. 11, 657-658, 2004.
doi:10.1049/el:20040433

50. Dong, X. and H. Y. Tam, "Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer," Appl. Phys. Lett., Vol. 90, No. 15, 151113-151115, 2007.
doi:10.1063/1.2722058

51. Ritari, T., J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal bandgap fibers," Opt. Express, Vol. 12, No. 17, 4080-4087, 2004.
doi:10.1364/OPEX.12.004080

52. Rindorf, L., J. B. Jensen, M. Dufva, L. H. Pedersen, P. T. Høiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express, Vol. 14, No. 18, 8224-48231, 2006.
doi:10.1364/OE.14.008224

53. Wu, D. K. C., B. T. Kuhlmey, and B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Opt. Lett., Vol. 34, No. 3, 322-324, 2009.
doi:10.1364/OL.34.000322

54. Fu, H. Y., H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, "Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer," Appl. Opt., Vol. 47, No. 15, 2835-2839, 2008.
doi:10.1364/AO.47.002835

55. Kim, H. M., T. H. Kim, B. Kim, and Y. Chung, "Enhanced transverse load sensitivity by using a highly birefringent photonic crystal fiber with larger air holes on one axis," Appl. Opt., Vol. 49, No. 20, 3841-3845, 2010.
doi:10.1364/AO.49.003841

56. Choi, H. Y., M. J. Kim, and B. H. Lee, "All-fiber machzehnder type interferometers formed in photonic crystal fiber," Opt. Express, Vol. 15, No. 9, 5711-5780, 2007.
doi:10.1364/OE.15.005711

57. Fogli, F., L. Saccomandi, P. Bassi, G. Bellance, and S. Trillo, "Full vectorial BMP modeling of index-guiding photonic crystal fibers and couplers," Opt. Express, Vol. 10, No. 1, 54-59, 2002.

58. Lee, B. H., J. B. Eom, J. Kim, D. S. Moon, and U.-C Paek, "Photonic crystal fiber coupler," Opt. Lett., Vol. 27, No. 10, 812-814, 2002.
doi:10.1364/OL.27.000812

59. Zhang, L. and C. Yang, "Polarization-dependent coupling in twincore photonic crystal fibers," J. Lightwave Technol., Vol. 22, No. 5, 1367-1373, 2004.
doi:10.1109/JLT.2004.825356

60. Lagsgaard, J., O. Bang, and A. Bjarklev, "Photonic crystal fiber design for broadband directional coupling," Opt. Lett., Vol. 29, No. 21, 2473-2475, 2004.
doi:10.1364/OL.29.002473

61. Saitoh, K., Y. Sato, and M. Koshiba, "Coupling characteristics of dual-core photonic crystal fiber couplers," Opt. Express, Vol. 11, No. 24, 3188-3195, 2003.
doi:10.1364/OE.11.003188

62. Saitoh, K., Y. Sato, and M. Koshiba, "Polarization splitter in three-core photonic crystal fibers," Opt. Express, Vol. 12, No. 17, 3940-3946, 2004.
doi:10.1364/OPEX.12.003940

63. Saitoh, K., N. J. Florous, M. Koshiba, and M. Skorobogatiy, "Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers," Opt. Express, Vol. 13, No. 25, 10327-10335, 2005.
doi:10.1364/OPEX.13.010327

64. Varshney, S. K., K. Saitoh, R. K. Sinha, and M. Koshiba, "Coupling characteristics of multicore photonic crystal fiber-based 1 × 4 power splitters," J. Lightwave Technol., Vol. 27, No. 12, 2062-2068, 2009.
doi:10.1109/JLT.2008.2006692

65. Nielsen, M. D., N. A. Mortensen, and J. R. Folkenberg, "Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications," Opt. Lett., Vol. 28, No. 18, 1645-1647, 2003.
doi:10.1364/OL.28.001645

66. Nielsen, M., N. Mortensen, M. Albertsen, J. Folkenberg, A. Bjarklev, and D. Bonacinni, "Predicting macrobending loss for large-mode area photonic crystal fibers," Opt. Express, Vol. 12, No. 8, 1775-1779, 2004.
doi:10.1364/OPEX.12.001775

67. Olszewski, J., M. Szpulak, and W. Urbanczyk, "Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers," Opt. Express, Vol. 13, No. 16, 6105-6022, 2005.
doi:10.1364/OPEX.13.006015

68. Vu, N. H., I.-K. Hwang, and Y.-H. Lee, "Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method," Opt. Lett., Vol. 33, No. 2, 119-121, 2008.
doi:10.1364/OL.33.000119

69. Huang, W. P., "Coupled-mode theory for optical waveguides: An overview," J. Opt. Soc. Am. A, Vol. 11, No. 3, 963-983, 1994.
doi:10.1364/JOSAA.11.000963

70. Sun, N.-H., J.-J. Liau, Y.-W. Kiang, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, and H.-W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 99, 289-306, 2009.
doi:10.2528/PIER09102704

71. Liau, J.-J., N.-H. Sun, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, C.-L. Pan, and H.-W. Chang, "A new look at numerical analysis of uniform fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 93, 385-401, 2009.
doi:10.2528/PIER09031102

72. Liu, Y. and W.-B. Dou, "Mutually-tapped coupling between combline resonator pairs for ultra-wideband (UWB) filter realization," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8--9, 1165-1172, 2009.

73. Li, J., J. Wang, and F. Jing, "Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1113-1124, 2010.
doi:10.1163/156939310791586070

74. Chiang, J.-S., N.-H. Sun, S.-C. Lin, and W.-F. Liu, "Analysis of an ultrashort PCF-based polarization splitter," J. Lightwave Technol., Vol. 28, No. 5, 707-713, 2010.
doi:10.1109/JLT.2009.2036945


© Copyright 2014 EMW Publishing. All Rights Reserved