PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 121 > pp. 381-389

ULTRATHIN CYLINDRICAL CLOAK

By J. Zhang and N. A. Mortensen

Full Article PDF (307 KB)

Abstract:
We propose a cylindrical invisibility cloak achieved utilizing two dimensional split-ring resonator structured metamaterials at microwave frequencies. The cloak has spatially uniform parameters in the axial direction, and can work very well even when the cloak shell is very thin compared with the concealed object and the working wavelength. Numerical simulation is performed to verify the functionality of the cloak, where the cloak layer is only around 1/4 of the operating wavelength. Our work provides a feasible solution to the experimental realization of cloaks with ideal parameters.

Citation:
J. Zhang and N. A. Mortensen, "Ultrathin Cylindrical Cloak," Progress In Electromagnetics Research, Vol. 121, 381-389, 2011.
doi:10.2528/PIER11091205
http://www.jpier.org/PIER/pier.php?paper=11091205

References:
1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.

2. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777, 2006.

3. Greenleaf, A., M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas., Vol. 24, 413, 2003.

4. Al├╣, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 016623, 2005.

5. Milton, G. W., M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys., Vol. 8, 248, 2006.

6. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.

7. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.

8. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photon., Vol. 1, 224, 2007.

9. Weder, R., "A rigorous analysis of high-order electromagnetic invisibility cloaks," J. Phys. A: Math. Theor., Vol. 41, 065207, 2008.

10. Zhang, J., Y. Luo, and N. A. Mortensen, "Minimizing the scattering of a nonmagnetic cloak," Appl. Phys. Lett., Vol. 96, 113511, 2010.

11. Chen, H., B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Letts., Vol. 99, 063903, 2007.

12. Ruan, Z., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations," Phys. Rev. Letts., Vol. 99, 113903, 2007.

13. Yan, M., Z. Ruan, and M. Qiu, "Cylindrical invisibility cloak with simplified material parameters is inherently visible," Phys. Rev. Letts., Vol. 99, 233901, 2007.

14. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, J. B. Pendry, M. Rahm, and A. Starr, "Scattering theory derivation of a 3D acoustic cloaking shell," Phys. Rev. Letts., Vol. 100, 024301, 2008.

15. Cai, W., U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Appl. Phys. Letts., Vol. 91, 111105, 2007.

16. Luo, Y., H. Chen, J. Zhang, L. Ran, and J. A. Kong, "Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations," Phys. Rev. B, Vol. 77, 125127, 2008.

17. Peng, L., L. Ran, and N. A. Mortensen, "The scattering of a cylindrical invisibility cloak: Reduced parameters and optimization," J. Phys. D: Appl. Phys., Vol. 44, 135101, 2011.

18. Luo, Y., J. Zhang, H. Chen, S. Xi, and B.-I. Wu, "Cylindrical cloak with axial permittivity/permeability spatially invariant," Appl. Phys. Lett., Vol. 93, 033504, 2008.

19. Chen, H., X. Jiang, and C. T. Chan, "Extending the bandwidth of electromagnetic cloaks," Phys. Rev. B, Vol. 76, 241104, 2007.

20. Luo, Y., J. Zhang, B.-I. Wu, and H. Chen, "Interaction of an electromagnetic wave with a cone-shaped invisibility cloak and polarization rotator," Phys. Rev. B, Vol. 78, 125108, 2008.

21. Yao, P., Z. Liang, and X. Jiang, "Limitation of the electromagnetic cloak with dispersive material," Appl. Phys. Letts., Vol. 92, 031111, 2008.

22. Chen, H., J. Ng, C. W. J. Lee, Y. Lai, and C. T. Chan, "General transformation for the reduced invisibility cloak," Phys. Rev. B, Vol. 80, 085112, 2009.

23. Jiang, W., T. Cui, X. Yang, Q. Cheng, R. Liu, and D. R. Smith, "Invisibility cloak without singularity," Appl. Phys. Lett., Vol. 93, 194102, 2008.

24. Zhang, P., Y. Jin, and S. He, "Obtaining a nonsingular two-dimensional cloak of complex shape from a perfect three-dimensional cloak," Appl. Phys. Lett., Vol. 93, 243502, 2008.

25. Jiang, W., J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E, Vol. 77, 066607, 2008.

26. Han, T., X. Tang, and F. Xiao, "The petal-shaped cloak," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2055-2062, 2009.

27. Han, T., C.-W. Qiu, X. Tang, and , "Creating rigorous open cloaks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1839-1847, 2010.

28. Zhang, J. J., Y. Luo, H. Chen, and B.-I. Wu, "Sensitivity of transformation cloak in engineering," Progress In Electromagnetics Research, Vol. 84, 93-104, 2008.

29. Cojocaru, E., "Illusion devices with internal or external circular objects designed by the coordinate transformation method," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2309-2317, 2010.

30. Mei, Z.-L., J. Bai, and T.-J. Cui, "Illusion devices with quasi-conformal mapping," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2561-2573, 2010.

31. Luo, Y., J. Zhang, H. Chen, B.-I. Wu, and L.-X. Ran, "Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect," Progress In Electromagnetics Research, Vol. 95, 167-178, 2009.

32. Luo, Y., J. B. Pendry, and A. Aubry, "Surface plasmons and singularities," Nano Lett., Vol. 10, 4186, 2010.

33. Luo, Y., A. Aubry, and J. B. Pendry, "Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: A transformation optics approach," Phys. Rev. B, Vol. 83, 155422, 2011.

34. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Letts., Vol. 78, 489, 2001.

35. Zhang, J., H. Chen, L. Ran, Y. Luo, B.-I. Wu, and J. A. Kong, "Experimental characterization and cell interactions of a two-dimensional isotropic left-handed metamaterial," Appl. Phys. Letts., Vol. 92, 084108, 2008.

36. Cheng, Q., H.-F. Ma, and T.-J. Cui, "A complementary lens based on broadband metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 93-101, 2010.


© Copyright 2014 EMW Publishing. All Rights Reserved