PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 122 > pp. 1-13

EXPERIMENTAL AND THEORETICAL STUDIES OF A BROADBAND SUPERLUMINALITY IN FABRY-PEROT INTERFEROMETER

By H.-Y. Yao and T.-H. Chang

Full Article PDF (576 KB)

Abstract:
This study experimentally demonstrates a broadband (20%) superluminality in a Fabry-Pérot-like interferometer implemented on a waveguide system. A narrow wave packet propagating with an efective group velocity of 5.29 +4.28 -1.70 c without distortion was observed. The underlying mechanism is attributed to the multiple-reflection interference and the modal effect, which provide an approach for controlling the wave characteristics through manipulating the geometry of the system. Besides, the criteria of the renowned generalized Hartman effect are explicitly clarified.

Citation:
H.-Y. Yao and T.-H. Chang, "Experimental and Theoretical Studies of a Broadband Superluminality in Fabry-Perot Interferometer," Progress In Electromagnetics Research, Vol. 122, 1-13, 2012.
doi:10.2528/PIER11092707
http://www.jpier.org/PIER/pier.php?paper=11092707

References:
1. Stenner, M. D., D. J. Gauthier, and M. A. Neifeld, "The speed of information in a fast-light optical medium," Nature, Vol. 94, 695-698, 2005.

2. Manipatruni, S., P. Dong, Q. Xu, and M. Lipson, "Tunable superluminal propagation on a silicon microchip," Opt. Lett., Vol. 33, 2928, 2008.
doi:10.1364/OL.33.002928

3. Thevenaz, L., "Slow and fast light in optical fibers," Nature Photonic, Vol. 2, 474-481, 2008.
doi:10.1038/nphoton.2008.147

4. Akulshin, A. M., S. Barreiro, and A. Lezama, "Steep anomalous dispersion in coherently prepared Rb vapor," Phys. Rev. Lett., Vol. 83, 4277-4280, 1999.
doi:10.1103/PhysRevLett.83.4277

5. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
doi:10.2528/PIER10041808

6. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.2528/PIER09052801

7. Wu, J.-W., F.-G. Luo, and Q.-T. Zhang, "Raman amplification and superluminal propagation of ultrafast pulses based on loop silicon waveguides: Theoretical modeling and performance," Progress In Electromagnetics Research, Vol. 79, 291-304, 2008.
doi:10.2528/PIER07101102

8. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011.

9. Winful, H. G., "Delay time and the hartman effect in quantum tunneling," Phys. Rev. Lett., Vol. 91, 260401, 2003.
doi:10.1103/PhysRevLett.91.260401

10. Steinberg, A. M., P. G. Kwiat, and R. Y. Chiao, "Measurement of the single-photon tunneling time," Phys. Rev. Lett., Vol. 71, No. 5, 708-711, 1993.
doi:10.1103/PhysRevLett.71.708

11. Enders, A. and G. Nimtz, "Photonic-tunneling experiments," Phys. Rev. B, Vol. 47, No. 15, 9605-9609, 1993.
doi:10.1103/PhysRevB.47.9605

12. Pablo, A., L. Barbero, H. E. Hernández-Figueroa, and E. Recami, "Propagation speed of evanescent modes," Phys. Rev. E, Vol. 62, No. 6, 8628-8635, 2000.
doi:10.1103/PhysRevE.62.8628

13. Ranfagni, A., D. Mugnai, P. Fabeni, and G. P. Pazzi, "Delay time measured in narrowed waveguides as a test of tunneling," Appl. Phys. Lett., Vol. 58, 774-776, 1991.
doi:10.1063/1.104544

14. Winful, H. G., "Group delay, stored energy, and the tunneling of evanescent electromagnetic waves," Phys. Rev. E, Vol. 68, 016615, 2003.
doi:10.1103/PhysRevE.68.016615

15. Winful, H. G., "Nature of superluminal barrier tunneling," Phys. Rev. Lett., Vol. 90, 023901, 2003.
doi:10.1103/PhysRevLett.90.023901

16. Nimtz, G., A. Haibel, and R.-M. Vetter, "Pulse reflection by photonic barriers," Phys. Rev. E, Vol. 66, 037602, 2003.

17. Spielmann, C., R. Szipocs, A. Stingl, and F. Krausz, "Tunneling of optical pulses through photonic band gap," Phys. Rev. Lett., Vol. 73, No. 17, 2308-2311, 1994.
doi:10.1103/PhysRevLett.73.2308

18. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Analysis of dependence of resonant tunneling on static positive parameters in a single-negative bilayer," Progress In Electromagnetics Research, Vol. 118, 151-165, 2011.
doi:10.2528/PIER11040202

19. Cojocaru, E., "Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterial," Progress In Electromagnetics Research, Vol. 113, 227-249, 2011.

20. Winful, H. G., "Apparent superluminality and the generalized Hartman effect in double-barrier tunneling," Phys. Rev. E, Vol. 72, 046608, 2005.
doi:10.1103/PhysRevE.72.046608

21. Longhi, S. and P. Laporta, "Measurement of superluminal optical tunneling times in double-barrier photonic band gaps," Phys. Rev. E, Vol. 65, 046610, 2002.
doi:10.1103/PhysRevE.65.046610

22. Esposito, S., "Multibarrier tunneling," Phys. Rev. E, Vol. 67, 016609-2003.

23. Wu, C.-J., Y.-N. Rau, and W.-H. Han, "Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 100, 27-36, 2010.
doi:10.2528/PIER09111610

24. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal ," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

25. Gupta, S. K. and K. J. Vinoy, "A compact defected ground microstrip device with photonic bandgap effects," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 255-266, 2009.
doi:10.1163/156939309787604553

26. Wu, C.-J., B.-H. Chu, and M.-T. Weng, "Analysis of optical reflection in a chirped distributed Bragg reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 129-138, 2009.
doi:10.1163/156939309787604643

27. Yao, H.-Y. and T.-H. Chang, "Effect of high-order modes on tunneling characteristics," Progress In Electromagnetics Research, Vol. 101, 291-306, 2010.
doi:10.2528/PIER09121603

28. Yuan, C. P. and T. H. Chang, "Modal analysis of metal-stub photonic band gap structure in a parallel-plate waveguide ," Progress In Electromagnetics Research, Vol. 119, 345-361, 2011.
doi:10.2528/PIER11050601

29. Armeanu, A. M., K. Edee, G. Granet, and P. Schiavone, "Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating," Progress In Electromagnetics Research, Vol. 106, 243-261, 2010.
doi:10.2528/PIER10021902

30. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Modal analysis of bi-isotropic H-guides," Progress In Electromagnetics Research, Vol. 111, 1-24, 2011.
doi:10.2528/PIER10093004

31. Amin, A. S. N., M. Mirhosseini, and M. Shahabadi, "Modal analysis of multilayer conical dielectric waveguides for azimuthal invariant modes," Progress In Electromagnetics Research, Vol. 105, 213-229, 2011.

32. Maleki Javan, A. R. and N. Granpayeh, "Fast terahertz wave switch/modulator based on photonic crystal structures," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 203-212, 2009.
doi:10.1163/156939309787604571

33. Landauer, R. and T. Martin, "Barrier interaction time in tunneling," Rev. Mod. Phys., Vol. 66, No. 1, 217-228, 1194.
doi:10.1103/RevModPhys.66.217


© Copyright 2014 EMW Publishing. All Rights Reserved