Vol. 122
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-08
Suspended Substrate Stripline Bandpass Filters with Source-Load Coupling Structure Using Lumped and Full-Wave Mixed Approach
By
Progress In Electromagnetics Research, Vol. 122, 519-535, 2012
Abstract
This paper presents the design of two suspended substrate stripline (SSS) bandpass filters (BPFs), both with a source-load coupling structure embedded to create a transmission zero (TZ) near each side of the passband edges. For the first BPF, the physical circuit layout is proposed first and followed by the establishment of an equivalent LC circuit. The optimization of element values of the LC circuit using a circuit-level simulator leads to quick adjustment of the structural parameters of the physical circuit layout with the aid of a full-wave simulator. For the second BPF, the ingenious equivalent LC circuit modified from that of the first one is proposed for bandwidth enhancement, which is achieved by exciting two extra loaded resonances in the passband. With the element values of the LC circuit optimized, proper reshaping the physical circuit layout from that of the first BPF is easily accomplished. The presented lumped and full-wave mixed approach is very efficient in that the circuit-level simulator is used to the largest extent and the time-consuming full-wave simulator is employed only at the later stage of the design. Experiments are conducted to verify the design of the two SSS BPFs and agreements are observed between the measured and simulated data.
Citation
Min-Hua Ho, and Po-Fan Chen, "Suspended Substrate Stripline Bandpass Filters with Source-Load Coupling Structure Using Lumped and Full-Wave Mixed Approach," Progress In Electromagnetics Research, Vol. 122, 519-535, 2012.
doi:10.2528/PIER11102502
References

1. Rooney, J. P. and L. M. Underkoefler, "Printed circuit integration of microwave filters," Microwave J., Vol. 21, 68-73, 1978.

2. Fardis, M. and R. Khosravi, "Analysis of periodically loaded suspended substrate structures in millimeter wave," Progress In Electromagnetics Research B, Vol. 3, 143-156, 2008.
doi:10.2528/PIERB07120901

3. Mobbs, C. I. and J. D. Rhodes, "A generalized Chebyshev suspended substrate stripline bandpass filter," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 5, 397-402, 1983.
doi:10.1109/TMTT.1983.1131510

4. Rhodes, J. D., "Suspended substrate filters and multiplexers," Proc. 16th European Microwave Conference, 8-16, 1986.
doi:10.1109/EUMA.1986.334169

5. Belyaev, B. A., A. A. Leksikov, A. M. Serzhantov, and V. V. Tyurnev, "Miniature suspended-substrate bandpass filter," Progress In Electromagnetics Research C, Vol. 15, 219-231, 2010.
doi:10.2528/PIERC10070604

6. Belyaev, B. A., A. A. Leksikov, A. M. Serzhantov, and V. V. Tyurnev, "Highly selective suspended stripline dual-mode filter ," Progress In Electromagnetics Research Letters, Vol. 25, 57-66, 2011.

7. Jaimes-Vera, A., I. Llamas-Garro, and A. Corona-Chavez, "Coaxial narrowband filters using a versatile suspended resonator," Progress In Electromagnetics Research, Vol. 115, 79-94, 2011.

8. Schwa, W., F. Bogelsack, and W. Menzel, "Multilayer suspended stripline and coplanar line filters," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 7, 1403-1407, 1994.
doi:10.1109/22.299736

9. Menzel, W., "A novel miniature suspended stripline filter," European Microwave Conf., 1047-1050, 2003.

10. Menzel, W. and A. Balalem, "Quasi-lumped suspended stripline filters and diplexers," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 10, 3230-3237, 2005.
doi:10.1109/TMTT.2005.855139

11. Menzel, W., M. S. Rahman Tito, and L. Zhu, "Low-loss ultra-wideband (UWB) filters using suspended stripline," Asia-Pacific Microwave Conf., (APMC), 2148-2151, 2005.

12. Oraizi, H. and M. S. Esfahlan, "Optimum design of lumped filters incorporating impedance matching by the method of least squares," Progress In Electromagnetics Research, Vol. 100, 83-103, 2010.
doi:10.2528/PIER09111611

13. Liao, X.-J., M.-H. Ho, W.-H. Hsu, W.-Q. Xu, and L.-J. Lin, "Quasi-lumped design of UWB BPF using suspended stripline," Progress In Electromagnetics Research Letters, Vol. 11, 65-72, 2009.
doi:10.2528/PIERL09080601

14. Chen, M., C.-Y. Jiang, W.-Q. Xu, and M.-H. Ho, "Design of high order suspended stripline bandpass filter with miniaturization," Progress In Electromagnetics Research Letters, Vol. 8, 9-17, 2009.
doi:10.2528/PIERL09031601

15. Chen, M., M.-H. Ho, W.-Q. Xu, L.-J. Lin, and W.-H. Hsu, "Designs of suspended stripline filters using quasi-lumped elements approach," Intl. Journal of Electrical Engineering, Vol. 17, No. 3, 231-239, 2010.

16. Ouyang, X. and Q.-X. Chu, "A mixed cross-coupling microstrip filter with multiple transmission zeros," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1515-1524, 2011.
doi:10.1163/156939311797164936

17. Chu, Q.-X. and L. Fan, "A compact bandpass filter with source-load coupling by using short-circuited coupled lines between ports," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1434-1500, 2010.

18. Weng, M. H., C. H. Kao, and Y. C. Chang, "A compact dual-band bandpass filter with high band selectivity using cross-coupled asymmetric SIRs for WLANs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 161-168, 2010.
doi:10.1163/156939310790735679

19. Fan, J.-W., C.-H. Liang, and X.-W. Dai, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
doi:10.2528/PIER07060904

20. Xu, W.-Q., M.-H. Ho, and C.-I G. Hsu, "Quasi-lumped design of UMTS diplexer using combined CPW and microstrip," Microwave and Optical Technology Lett., Vol. 51, No. 1, 150-152, 2009.
doi:10.1002/mop.23952

21. , , , ADS, Agilent Technologies Inc., United State CA, 2011.
doi:10.1109/TMTT.1984.1132900

22. , , , CST studio suite 2011, Computer Simulation Technology AG, Germany , 2011.
doi:10.1002/0471221619

23. Kajfez, D., "Computed model field distribution for isolated dielectric resonators," IEEE. Trans. Microwave Theory Tech., Vol. 32, No. 12, 1609-1616, 1984.

24. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Chapter 2, John Wiley & Sons, New York, 2001.