Vol. 123
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-04
New Wilkinson Power Dividers Based on Compact Stepped-Impedance Transmission Lines and Shunt Open Stubs
By
Progress In Electromagnetics Research, Vol. 123, 407-426, 2012
Abstract
This study presents new Wilkinson power dividers using compact stepped-impedance structures and capacitive loads to achieve the required power splitting. This approach can produce additional transmission zeros and effectively suppress the desired stopbands because shunt open stubs realize capacitive loads. This study proposes two equal-split dividers and two unequal-split dividers. For the first equal-split case, one shunt open stub forms the needed capacitor in each transmission path, creating one additional transmission zero in each path. To obtain one more transmission zero in each transmission path, the second Wilkinson power divider uses two shunt open stubs in each path to achieve the same capacitor value as the first divider. This study also tests unequal-split dividers with one and two transmission zeros in each path to confirm that compact stepped-impedance transmission lines and shunt to-ground capacitors can be utilized in unequal power division.
Citation
Pu-Hua Deng, Jin-Hao Guo, and Wen-Chi Kuo, "New Wilkinson Power Dividers Based on Compact Stepped-Impedance Transmission Lines and Shunt Open Stubs," Progress In Electromagnetics Research, Vol. 123, 407-426, 2012.
doi:10.2528/PIER11111612
References

1. Pozar, D. M., Microwave Engineering, 2nd Ed., Chapter 7, Wiley, New York, 1998.

2. Li, J. L., S. W. Qu, and Q. Xue, "Capacitively loaded Wilkinson power divider with size reduction and harmonic suppression," Microwave and Optical Technology Letters, Vol. 49, No. 11, 2737-2739, Nov. 2007.
doi:10.1002/mop.22869

3. Oraizi, H. and M. S. Esfahlan, "Miniaturization of Wilkinson power dividers by using defected ground structures," Progress In Electromagnetics Research Letters, Vol. 4, 113-120, 2008.
doi:10.2528/PIERL08060701

4. Shamsinejad, S., M. Soleimani, and N. Komjani, "Novel miniaturized Wilkinson power divider for 3G mobile receivers," Progress In Electromagnetics Research Letters, Vol. 3, 9-16, 2008.
doi:10.2528/PIERL08012603

5. He, J., B. Z. Wang, and W. Shao, "Compact power divider embedded with zigzag microstrip slow-wave structures," Electronics Letters, Vol. 45, No. 1, 62-63, Jan. 2009.
doi:10.1049/el:20091954

6. Zhang, Z., Y.-C. Jiao, S. Tu, S.-M. Ning, and S.-F. Cao, "A miniaturized broadband 4 : 1 unequal Wilkinson power divider," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 505-511, 2010.

7. Sedighi, S.-H. and M. Khalaj-Amirhosseini, "Compact Wilkinson power divider using stepped impedance transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1773-1782, 2011.
doi:10.1163/156939311797453980

8. Wang, X. Y., J.-L. Li, and W. Shao, "Flexible design of a compact coupled-line power divider," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2168-2177, 2011.
doi:10.1163/156939311798147033

9. Huang, W., C.-J. Liu, Q. Chen, Y.-N. Li, X. Chen, and K.-M. Huang, "Compact unequal Wilkinson power dividers using planar artificial transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2201-2211, Sep. 2011.
doi:10.1163/156939311798147088

10. Gupta, N., P. Ghosh, and M. Toppo, "A miniaturized Wilkinson power divider using DGS and fractal structure for GSM application," Progress In Electromagnetics Research Letters, Vol. 27, 25-31, 2011.
doi:10.2528/PIERL11082104

11. Li, X., Y.-J. Yang, L. Yang, S.-X. Gong, X. Tao, Y. Gao, K. Ma, and X.-L. Liu, "A novel design of dual-band unequal Wilkinson power divider," Progress In Electromagnetics Research C, Vol. 12, 93-100, 2010.
doi:10.2528/PIERC10010705

12. Park, M. J. and B. Lee, "A dual-band Wilkinson power divider," IEEE Microwave Wireless Components Letters, Vol. 18, No. 2, 85-87, Feb. 2008.
doi:10.1109/LMWC.2007.915031

13. Yang, T., C.-J. Liu, L. Yan, and K.-M. Huang, "A compact dual-band power divider using planar artificial transmission lines for GSM/DCS applications," Progress In Electromagnetics Research Letters, Vol. 10, 185-191, 2009.
doi:10.2528/PIERL09073107

14. Wu, Y., Y. Liu, and S. Li, "An unequal dual-frequency Wilkinson power divider with optional isolation structure," Progress In Electromagnetics Research, Vol. 91, 393-411, 2009.
doi:10.2528/PIER09030501

15. Wu, Y., Y. Liu, and S. Li, "Dual-band modified Wilkinson power divider without transmission line stubs and reactive components," Progress In Electromagnetics Research, Vol. 96, 9-20, 2009.
doi:10.2528/PIER09072109

16. Wu, Y., Y. Liu, S. Li, C. Yu, and X. Liu, "Closed-form design method of an N-way dual-band Wilkinson hybrid power divider," Progress In Electromagnetics Research, Vol. 101, 97-114, 2010.
doi:10.2528/PIER09111906

17. Shamaileh, K. A. A. and N. I. Dib, "Design of compact dual-frequency Wilkinson power divider using non-uniform transmission lines," Progress In Electromagnetics Research C, Vol. 19, 37-46, 2011.

18. Wu, Y., Y. Liu, Y. Zhang, J. Gao, and H. Zhou, "A dual band unequal Wilkinson power divider without reactive components," IEEE Transactions Microwave Theory Techniques, Vol. 57, No. 1, 216-222, Jan. 2009.
doi:10.1109/TMTT.2008.2008981

19. Li, J. C., J. C. Nan, X. Y. Shan, and Q. F. Yan, "A novel modified dual-frequency Wilkinson power divider with open stubs and optional isolation," Journal of Electromagnetic Waves and Applications, Vol. 24, 2223-2235, 2010.
doi:10.1163/156939310793699163

20. Lin, Z. and Q.-X. Chu, "A novel approach to the design of dual-band power divider with variable power dividing ratio based on coupled-lines," Progress In Electromagnetics Research, Vol. 103, 271-284, 2010.
doi:10.2528/PIER10012202

21. Huang, W., C.-J. Liu, L. Yan, and K.-M. Huang, "A miniaturized dual-band power divider with harmonic suppression for GSM applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 81-91, 2010.
doi:10.1163/156939310790322082

22. Wang, X. H., L. Chen, X.-W. Shi, Y. F. Bai, L. Chen, and X.-Q. Chen, "Planar dual-frequency power divider using umbrella-shaped resonator," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 597-606, 2010.
doi:10.1163/156939310791036377

23. Li, X., Y.-J. Yang, L. Yang, S.-X. Gong, T. Hong, X. Chen, Y.-J. Zhang, X. Tao, Y. Gao, K. Ma, and X.-L. Liu, "A novel unequal Wilkinson power divider for dual-band operation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1015-1022, 2010.
doi:10.1163/156939310791585990

24. Dai, G. L. and M. Y. Xia, "A dual-band unequal Wilkinson power divider using asymmetric coupled-line," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11--12, 1587-1595, 2011.
doi:10.1163/156939311797164981

25. Li, B., X. Wu, N. Yang, and W. Wu, "Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub," Progress In Electromagnetics Research, Vol. 111, 163-178, 2011.
doi:10.2528/PIER10110108

26. Yang, J., C. Gu, and W. Wu, "Design of novel compact coupled microstrip power divider with harmonic suppression," IEEE Microwave Wireless Components Letters, Vol. 18, No. 9, 572-574, Sep. 2008.
doi:10.1109/LMWC.2008.2002444

27. Yi, K. H. and B. Kang, "Modified Wilkinson power divider for nth harmonic suppression," IEEE Microwave Wireless Components Letters, Vol. 13, No. 5, 178-180, May 2003.
doi:10.1109/LMWC.2003.811670

28. Tu, W. H., "Compact Wilkinson power divider with harmonic suppression," Microwave and Optical Technology Letters, Vol. 49, No. 11, 2825-2827, Nov. 2007.
doi:10.1002/mop.22875

29. Fan, F., Z. H. Yan, and J. B. Jiang, "Design of a novel compact power divider with harmonic suppression," Progress In Electromagnetics Research Letters, Vol. 5, 151-157, 2008.
doi:10.2528/PIERL08111808

30. Cheng, K. K. M. and W. C. Ip, "A novel power divider design with enhanced spurious suppression and simple structure," IEEE Transactions Microwave Theory Techniques, Vol. 58, No. 12, 3903-3908, Dec. 2010.

31. Ahn, H. R. and I. Wolff, "General design equations, small-sized impedance transformers, and their application to small-sized three-port 3-dB power dividers," IEEE Transactions Microwave Theory Techniques, Vol. 49, No. 7, 1277-1288, Jul. 2001.
doi:10.1109/22.932248

32. Chen, H. and Y.-X. Zhang, "A novel compact planar six-way power divider using folded and hybrid-expanded coupled lines," Progress In Electromagnetics Research, Vol. 76, 243-252, 2007.
doi:10.2528/PIER07070601

33. Kim, J. G. and G. M. Rebeiz, "Miniature four-way and two-way 24 GHz Wilkinson power dividers in 0.13μm CMOS," IEEE Microwave Wireless Components Letters, Vol. 17, No. 9, 658-660, 2007.
doi:10.1109/LMWC.2007.903451

34. Parad, L. I. and R. L. Moynihan, "Split-tee power divider," IEEE Transactions Microwave Theory Techniques, Vol. 13, No. 1, 91-95, Jan. 1965.
doi:10.1109/TMTT.1965.1125934

35. Naghavi, A. H., M. Tondro Aghmiyouni, M. Jahanbakht, and A. A. Lotfi Neyestanak, "Hybrid wideband microstrip Wilkinson power divider based on lowpass filter optimized using particle swarm method," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14--15, 1877-1886, 2010.

36. Qaroot, A. M. and N. I. Dib, "General design of N-way multi-frequency unequal split Wilkinson power divider using transmission line transformers," Progress In Electromagnetics Research C, Vol. 14, 115-129, 2010.
doi:10.2528/PIERC10060109

37. Peters, F. D. L., D. Hammou, S. O. Tatu, and T. A. Denidni, "Modified millimeter-wave Wilkinson power divider for antenna feeding networks," Progress In Electromagnetics Research Letters, Vol. 17, 11-18, 2010.
doi:10.2528/PIERL10061805

38. Kim, K., J. Byun, and H.-Y. Lee, "Substrate integrated waveguide Wilkinson power divider with improved isolation performance," Progress In Electromagnetics Research Letters, Vol. 19, 41-48, 2010.

39. Zhou, B., H. Wang, and W.-X. Sheng, "A modified UWB Wilkinson power divider using delta stub," Progress In Electromagnetics Research Letters, Vol. 19, 49-55, 2010.

40. Chiang, C. T. and B.-K. Chung, "Ultra wideband power divider using tapered line," Progress In Electromagnetics Research, Vol. 106, 61-73, 2010.
doi:10.2528/PIER10061603

41. Qaroot, A. M., N. I. Dib, and A. A. Gheethan, "Design methodology of multi-frequency unequal split Wilkinson power dividers using transmission line transformers," Progress In Electromagnetics Research B, Vol. 22, 1-21, 2010.
doi:10.2528/PIERB10042809

42. Huang, S., X. Xie, and B. Yan, "K band Wilkinson power divider based on a taper equation," Progress In Electromagnetics Research Letters, Vol. 27, 75-83, 2011.
doi:10.2528/PIERL11080809

43. Wu, Y. and Y. Liu, "An unequal coupled-line Wilkinson power divider for arbitrary terminated impedances," Progress In Electromagnetics Research, Vol. 117, 181-194, 2011.

44. Wang, D., H. Zhang, T. Xu, H. Wang, and G. Zhang, "Design and optimization of equal split broadband microstrip Wilkinson power divider using enhanced particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 118, 321-334, 2011.
doi:10.2528/PIER11052303