PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 124 > pp. 265-283

DETUNING STUDY OF IMPLANTABLE ANTENNAS INSIDE THE HUMAN BODY

By N. Vidal, S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos

Full Article PDF (727 KB)

Abstract:
This study quantifies the detuning and impedance mismatch of antennas implanted inside the human body. Maximum frequency shifts caused by variations in the electrical properties of body tissues and different anatomical distributions were derived. The results are relevant to the design of implantable antennas. They indicate the bandwidth enhancement and initial tuning necessary for correct functioning. The study was carried out using electromagnetic modeling based on the finite-difference time-domain method and high-resolution anatomical models. Four anatomical computer models of two adults and two children were used. The implanted antennas operated in the Medical Implant Communication Service band. The most important detuning and impedance mismatch was found for subcutaneous locations and in areas where a layer of fat tissue was present. The maximum frequency shift towards higher frequencies was 70 MHz. The frequency shift did not occur symmetrically around 403 MHz, but was shifted towards higher frequencies.

Citation:
N. Vidal, S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2012.
doi:10.2528/PIER11120515
http://www.jpier.org/pier/pier.php?paper=11120515

References:
1. Receveur, R. A. M., F. W. Lindemans, and N. F. de Rooij, "Microsystem technologies for implantable applications," J. Micromech. Microeng., Vol. 17, 50-80, 2007.
doi:10.1088/0960-1317/17/5/R02

2. Furse, C. M., Biomedical telemetry: Today's opportunities and challenges, IEEE Workshop on Antenna Technology Small Antennas and Novel Metamaterials, Santa Monica, California, USA, Mar. 2009.

3. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Design of implantable microstrip antennas for communication with medical implants," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1944-1951, 2004.
doi:10.1109/TMTT.2004.831976

4. Johnson, J., Statistical analysis of detuning effects for implantable microstrip antennas, Ph.D. Thesis, University of Utah, 2007.

5. Kim, J. and Y. Rahmat-Samii, "Implanted antennas inside a human body: Simulations, designs, and characterizations," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1934-1943, 2004.
doi:10.1109/TMTT.2004.832018

6. Rahmat-Samii, Y. and J. Kim, Implanted Antennas in Medical Wireless Communications, Morgan & Claypool Publishers, 2006.

7. Kim, J. and Y. Rahmat-Sammii, "Planar inverted-F antennas on implantable medical devices: Meandered type versus spiral type," Microwave and Optical Technology Letters, Vol. 48, No. 3, 567-572, 2006.
doi:10.1002/mop.21409

8. Lee, C. M., T. C. Yo, C. H. Luo, C. H. Tu, and Y.-Z. Juang, "Compact broadband stacked implantable antenna for biotelemetry with medical devices," Electronics Letters, Vol. 43, No. 12, 2007.

9. Lee, C. M., T. C. Yo, F. J. Huang, and C. H. Luo, "Dual-resonant P-shape with double L-strips PIFA for implantable biotelemetry," Electronics Letters, Vol. 44, No. 14, 2008.
doi:10.1049/el:20081235

10. Liu, W. C., F. M. Yeh, and M. Ghavami, "Minituarized implantable broadband antenna for biotelemetry communication," Microwave and Optical Technology Letters, Vol. 50, No. 9, 2407-2409, 2008.
doi:10.1002/mop.23649

11. Yilmaz, T., T. Karacolak, and E. Topsakal, "Characterization and testing of a skin mimicking material for implantable antennas operating at ISM Band," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 418-420, 2008.
doi:10.1109/LAWP.2008.2001736

12. Karacolak, T., A. Z. Hood, and E. Topsakal, "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 1001-1008, 2008.
doi:10.1109/TMTT.2008.919373

13. Karacolak, T., R. Cooper, J. Butler, S. Fisher, and E. Topsakal, "In vivo verification of implantable antennas using rats as model animals," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 334-337, 2010.
doi:10.1109/LAWP.2010.2048693

14. Liu, W. C., S. H. Chen, and C. M. Wu, "Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices," Microwave and Optical Technology Letters, Vol. 51, No. 3, 755-757, 2009.
doi:10.1002/mop.24142

15. Lee, C. M., T. C. Yo, F. J. Huang, and C. H. Luo, "Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry," Microwave and Optical Technology Letters, Vol. 51, No. 3, 749-752, 2009.
doi:10.1002/mop.24189

16. Vidal, N. and J. M. Lopez-Villegas, "Changes in electromagnetic field absorption in the presence of subcutaneous implanted devices: Minimizing increases in absorption," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 3, 545-555, 2010.
doi:10.1109/TEMC.2010.2051332

17. Gemio, J., J. Parrón, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604

18. Tan, K. B., X. An, F. F. Fan, and C. H. Liang, "Design of wideband microstrip printed monopole antenna with defected ground plane," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 169-178, 2010.
doi:10.1163/156939310790735606

19. Kasabegoudar, V. G., "Low profile suspended microstrip antennas for wideband applications," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1795-1806, 2011.
doi:10.1163/156939311797454033

20. Christ, A., W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, W. Rascher, R. Janka, W. Bautz, J. Chen, B. Kiefer, P. Schmitt, H. P. Hollenbach, J. Shen, M. Oberle, D. Szczerba, A. Kam, J. W. Guag, and N. Kuster, "The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations," Phys. Med. Biol., Vol. 55, 23-38, 2010.
doi:10.1088/0031-9155/55/2/N01

21. FCC guidelines for evaluating the environmental effects of radio frequency radiation, FCC, Washington, DC, 1996.

22., "Medical Implant Communications Service (MICS) federal register," Rules and Regulations, Vol. 64, No. 240, 69926-69934, 1999.

23. Neihart, N. M. and R. R. Harrison, "Micropower circuits for bidirectional wireless telemetry in neural recording applications," IEEE Transactions on Biomedical Engineering, Vol. 50, No. 11, 1950-1959, 2005.
doi:10.1109/TBME.2005.856247

24. Chow, E. Y., A. L. Chlebowski, and P. P. Irazoqui, "A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor," IEEE Transactions on Biomedical Circuits and Systems, Vol. 4, No. 6, 340-349, 2010.
doi:10.1109/TBCAS.2010.2081364

25. Chow, E. Y., A. L. Chlebowski, S. Chakraborty, W. J. Chappell, and P. P. Irazoqui, "Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 6, 1487-1496, 2010.
doi:10.1109/TBME.2010.2041058

26. Gao, Y., Y. Zheng, S. Diao, W. D. Toh, C. W. Ang, M. Je, and C. H. Heng, "Low-power ultrawideband wireless telemetry transceiver for medical sensor applications," IEEE Transactions on Biomedical Engineering, Vol. 58, No. 3, 768-722, 2010.

27. Crescini, D., E. Sardini, and M. Serpelloni, "Design and test of an autonomous sensor for force measurements in human knee implants," Sensors and Actuators, Vol. 166, 1-8, 2011.

28. Noroozi, Z. and F. Hojjat-Kashani, "Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring," Progress In Electromagnetics Research Letters, Vol. 28, 9-21, 2012.
doi:10.2528/PIERL11070113

29. Parise, M., "On the use of cloverleaf coils to induce therapeutic heating in tissues," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11--12, 1667-1677, 2011.
doi:10.1163/156939311797164945

30. Zhang, M. and A. Alden, "Calculation of whole-body SAR from a 100 mhz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.
doi:10.2528/PIER11052005

31. O'Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIER10071002

32. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

33. Sullivan, D. M., D. T. Borupa, and O. P. Gandhi, "Use of the finite-difference time-domain method in calculating EM absorption in human tissues," IEEE Transactions on Biomedical Engineering, Vol. 34, No. 2, 148-157, 1987.
doi:10.1109/TBME.1987.326039

34. SEMCAD X by SPEAG, www.semcad.com.

35. Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields, FCC, Washington, DC, 2001.

36. Smetana, W., B. Balluch, G. Stangl, E. Gaubitzer, M. Edetsberger, and G. Köhler, "A multi-sensor biological monitoring module built up in LTCC-technology," Microelectronic Engineering, Vol. 84, 1240-1243, 2007.
doi:10.1016/j.mee.2007.01.155

37. Bembnowicza, P., M. MaÃlodobra, W. Kubicki, P. Szczepan Ska, A. Gorecka-Drzazga, J. Dziuban, A. Jonkisz, A. Karpiewskab, T. Dobosz, and L. Golonk, "Preliminary studies on LTCC based PCR microreactor," Sensors and Actuators, Vol. 150, 715-721, 2010.
doi:10.1016/j.snb.2010.08.015


© Copyright 2014 EMW Publishing. All Rights Reserved