PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 126 > pp. 555-571

EVAPORATION DUCT RETRIEVAL USING CHANGES IN RADAR SEA CLUTTER POWER VERSUS RECEIVING HEIGHT

By J.-P. Zhang, Z.-S. Wu, Y.-S. Zhang, and B. Wang

Full Article PDF (373 KB)

Abstract:
A method for retrieving evaporation duct height (EDH) is introduced in this paper. The proposed technique employs the changes in radar sea clutter power observed at different heights as input information. It identifies the EDH associated with the modeled clutter change pattern that best matches measured change patterns. The performance of the method is evaluated in terms of RMS errors in retrieving actual EDHs that range from 0 to 40 m. The comparison of the proposed method with the conventional clutter pattern matching method shows that the former more effectively retrieves actual EDHs.

Citation:
J.-P. Zhang, Z.-S. Wu, Y.-S. Zhang, and B. Wang, "Evaporation Duct Retrieval Using Changes in Radar Sea Clutter Power Versus Receiving Height," Progress In Electromagnetics Research, Vol. 126, 555-571, 2012.
doi:10.2528/PIER11121307
http://www.jpier.org/PIER/pier.php?paper=11121307

References:
1. Hitney, H. V., et al., "Tropospheric radio propagation assessment," Proc. IEEE, Vol. 73, No. 2, 265-283, 1985.
doi:10.1109/PROC.1985.13138

2. Paulus, R. A., "Evaporation duct effects on sea clutter," IEEE Trans. Antennas Propag., Vol. 38, No. 11, 1765-1771, 1990.
doi:10.1109/8.102737

3. Yardim, C., P. Gerstoft, and W. S. Hodgkiss, "Estimation of radio refractivity from radar clutter using Bayesian Monte Carlo analysis," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1318-1327, 2006.
doi:10.1109/TAP.2006.872673

4. Woods, G., et al., "High-capacity, long-range, over ocean microwave link using the evaporation duct ," IEEE J. Ocean. Eng., Vol. 34, No. 3, 323-329, 2009.
doi:10.1109/JOE.2009.2020851

5. Alexopoulos, A., "Effect of atmospheric propagation in RCS predictions," Progress In Electromagnetics Research, Vol. 101, 277-290, 2010.
doi:10.2528/PIER09121509

6. Jeske, H., "State and limits of prediction methods of radar wave propagation conditions over sea," Modern Topics in Microwave Propagation and Air-Sea Interaction, 130-148, 1973.

7. Richter, J. H., Sensing of radio refractivity and aerosol extinction, International Geoscience and Remote Sensing Symposium, Vol. 1, 381-385, Pasadena, CA, Aug. 8-12, 1994.

8. Willitsford, A. and C. R. Philbrick, "Lidar description of the evaporative duct in ocean environments," Proc. SPIE, Vol. 5885, 140-147, Bellingham, WA, 2005.

9. Haack, T. and S. D. Burk, "Summertime marine refractivity conditions along coastal California," J. Appl. Meteorology, Vol. 40, No. 4, 673-687, 2011.
doi:10.1175/1520-0450(2001)040<0673:SMRCAC>2.0.CO;2

10. Rogers, L. T., C. P. Hattan, and J. K. Stapleton, "Estimating evaporation duct heights from radar sea echo," Radio Sci., Vol. 35, No. 4, 955-966, 2000.
doi:10.1029/1999RS002275

11. Gerstoft, P., et al., "Inversion for refractivity parameters from radar sea clutter," Radio Sci., Vol. 38, No. 3, 8053, 2003.
doi:10.1029/2002RS002640

12. Zhao, X.-F. and S.-X. Huang, "Refractivity from clutter by variational adjoint approach," Progress In Electromagnetics Research B, Vol. 33, 153-174, 2011.
doi:10.2528/PIERB11061609

13. Douvenot, R., et al., "Real time refractivity from clutter using a best fit approach improved with physical information ," Radio Sci., Vol. 45, RS1007, 2010.
doi:10.1029/2009RS004137

14. Zhang, J.-P., Z.-S. Wu, and R.-X. Hu, "Combined estimation of low-altitude radio refractivity based on sea clutters from multiple shipboard radars," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1201-1212, 2011.
doi:10.1163/156939311795762033

15. Yardim, C., P. Gerstoft, and W. S. Hodgkiss, "Tracking atmospheric ducts using radar clutter: evaporation duct tracking using Kalman filters," International Symposium on Antennas and Propagation Society, 4609-4612, Honolulu, HI, Jun. 9-15, 2007.

16. Yardim, C., P. Gerstoft, and W. S. Hodgkiss, "Evaporation duct estimation from clutter using meteorological statistics," International Symposium on Antennas and Propagation Society, 1-4, San Diego, CA, Jul. 5-11, 2008.

17. Yardim, C., P. Gerstoft, and W. S. Hodgkiss, "Sensitivity analysis and performance estimation of refractivity from clutter techniques," Radio Sci., Vol. 44, RS1008, 2009.
doi:10.1029/2008RS003897

18. Karimian, A., et al., "Refractivity estimation from sea clutter: An invited review," Radio Sci., Vol. 46, RS6013, 2011.
doi:10.1029/2011RS004818

19. Wang, B., et al., "Retrieving evaporation duct heights from radar sea clutter using particle swarm optimization (PSO) algorithm," Progress In Electromagnetics Research M, Vol. 9, 79-91, 2009.
doi:10.2528/PIERM09090403

20. Hall, M. P. M., Effects of the Troposphere on Radio Communication, Peter Peregrinus Ltd., Stevenage, 1979.

21. Sirkova, I., "Brief review on PE method application to propagation channel modeling in sea environment," Central European Journal of Engineering, 1-20, 2011.

22. Zhao, X.-L., J.-Y. Huang, and S.-H. Gong, "Modeling on multi-eigenpath channel in marine atmospheric duct," Radio Sci., Vol. 44, RS1009, 2009.
doi:10.1029/2008RS003847

23. Zhang, J.-P., et al., "A four-parameter M-profile model for the evaporation duct estimation from radar clutter ," Progress In Electromagnetics Research, Vol. 114, 353-368, 2011.

24. Wang, A.-Q., L.-X. Guo, and C. Chai, "Numerical simulations of electromagnetic scattering from 2D rough surface: Geometric modeling by nurbs surface," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1315-1328, 2010.
doi:10.1163/156939310791958662

25. Qi, C., et al., "Electromagnetic scattering and doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401

26. Chen, Z., et al., "Wave measurements with multi-frequency HF radar in the east china sea," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 7, 1031-1043, 2011.
doi:10.1163/156939311795253902

27. Li, J., L.-X. Guo, and H. Zeng, "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104

28. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three-dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607

29. Guo, L.-X., et al., "A high order integral SPM for the conducting rough surface scattering with the tapered wave incidence-TE case," Progress In Electromagnetics Research, Vol. 114, 333-352, 2011.

30. Sirkova, I., "Propagation factor and path loss simulation results for two rough surface reflection coefficients applied to the microwave ducting propagation over the sea ," Progress In Electromagnetics Research M, Vol. 17, 151-166, 2011.

31. Kuttler, J. R. and G. D. Dockery, "Theoretical description of the parabolic approximation/fourier split-step method of representing electromagnetic propagation in the troposphere ," Radio Sci., Vol. 26, No. 2, 381-393, 1991.
doi:10.1029/91RS00109

32. Levy, M. F., Parabolic Equation Methods for Electromagnetic Wave Propagation, The Institution of Electrical Engineers, London, 2000.

33. Dockery, G. D. and J. R. Kuttler, "An improved impedance-boundary algorithm for fourier split-step solutions of the parabolic wave equation," IEEE Trans. Antennas Propag., Vol. 44, No. 12, 1592-1599, 1996.
doi:10.1109/8.546245

34. Clerc, M., Particle Swarm Optimization, ISTE Publishing Company, London, 2006.

35. Wang, J., B. Yang, S. H. Wu, and J. S. Chen, "A novel binary particle swarm optimization with feedback for synthesizing thinned planar arrays," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1985-1998, 2011.
doi:10.1163/156939311798071965


© Copyright 2014 EMW Publishing. All Rights Reserved