PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 124 > pp. 55-70

A NOVEL WIDEBAND ANTENNA ARRAY WITH TIGHTLY COUPLED OCTAGONAL RING ELEMENTS

By Y. Chen, S. Yang, and Z.-P. Nie

Full Article PDF (960 KB)

Abstract:
A novel phased array antenna with wide bandwidth and wide scan angle is presented. The radiating aperture of the phased array consists of periodically and closely spaced octagonal ring elements. Tight capacitive coupling between adjacent elements is realized by interdigitating the end portions of the ring elements. To improve the impedance matching of the individual antenna elements over wide frequency band, a novel impedance matching layer consists of periodic octagonal ring element is subtly designed and placed over the radiating aperture. Both of the radiating elements and impedance matching layer are printed on a flexible membrane substrate with a thickness of 0.04 mm. Measured results of a 16-element linear array demonstrate that good impedance matching over a 4.4:1 bandwidth can be obtained for beam scan angles within ±45° from broadside. As compared to conventional wideband phased array such as tapered slot antenna array, the proposed phased array has the features such as low cost, low profile, light weight, and ease of fabrication.

Citation:
Y. Chen, S. Yang, and Z.-P. Nie, "A Novel Wideband Antenna Array with Tightly Coupled Octagonal Ring Elements," Progress In Electromagnetics Research, Vol. 124, 55-70, 2012.
doi:10.2528/PIER11121312
http://www.jpier.org/PIER/pier.php?paper=11121312

References:
1. Yngvesson, K. S., D. H. Schaubert, T. L. Korzeniowski, E. L. Kollberg, T. Thungren, and J. F. Johansson, "Endfire tapered slot antennas on dielectric substrates," IEEE Trans. Antennas Propagat., Vol. 33, No. 12, 1392-1399, 1985.
doi:10.1109/TAP.1985.1143542

2. Xu, Z., Y. Yuan, X. Q. Yan, Z. H. Feng, and Q. Z. Liu, "Scan blindness of tapered-slot array optimized with tapered-aerosubstrate in the triangular elements grids," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1329-1339, 2011.
doi:10.1163/156939311795762097

3. Hansen, R. C., Phased Array Antennas, John Wiley & Sons, Inc., New York, 1998.
doi:10.1002/0471224219

4. Liao, W.-J., S.-H. Chang, and W.-H. Lee, "Beam scanning array using spatial diversity," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 481-494, 2011.
doi:10.1163/156939311794500232

5. Mailloux, R. J., Phased Array Antenna Handbook, Artech House Inc., Norwood, 2005.

6. Holter, H., T. H. Chio, and D. H. Schaubert, "Experimental results of 144-element dual-polarized endfire tapered-slot phased arrays," IEEE Trans. Antennas Propagat., Vol. 48, No. 11, 1707-1718, 2000.
doi:10.1109/8.900228

7. Munk, B. A., et al., "A low-profile broadband phased array antenna," Proc. Antennas Propagation Soc. Int. Symp., 448-451, 2003.

8. Oikonomou, A., I. S. Karanasiou, and N. K. Uzunoglu, "Phased-array near field radiometry for brain intracranial applications," Progress In Electromagnetics Research, Vol. 109, 345-360, 2010.
doi:10.2528/PIER10073004

9. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Rectangular slot antenna with patch stub for ultra wideband applications and phased array systems," Progress In Electromagnetics Research, Vol. 53, 227-237, 2005.
doi:10.2528/PIER04092701

10. Eldek, A. A., "Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications," Progress In Electromagnetics Research, Vol. 59, 1-15, 2006.
doi:10.2528/PIER06012001

11. Lewis, L. R., M. Fasset, and J. Hunt, "A broadband stripline array element," IEEE Symp. Antennas and Propagation Dig., 335-337, Atlanta, GA, 1974.

12. Zhou, B., H. Li, X. Zou, T.-J. Cui, and , "Broadband and high-gain planar vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

13. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
doi:10.2528/PIER08040601

14. Shin, J. and D. H. Schaubert, "A parameter study of stripline-fed Vivaldi notch-antenna arrays," IEEE Trans. Antennas Propagat., Vol. 47, No. 5, 879-886, 1999.
doi:10.1109/8.774151

15. Lee, J. J., S. Livingston, and R. Koenig, "A low-profile wide-band (5 : 1) dual-pol array," IEEE Antennas Wireless Propag. Lett., Vol. 2, 46-49, 2003..
doi:10.1109/LAWP.2003.812243

16. Li, X., Y.-J. Yang, X. Tao, L. Yang, S.-X. Gong, Y. Gao, K. Ma, and X.-L. Liu, "A novel design of wideband circular polarization antenna array with high gain characteristic," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 951-958, 2010.
doi:10.1163/156939310791285245

17. Wong, K., Compact and Broadband Microstrip Antennas, John Wiley & Sons, Inc., New York, 2002.
doi:10.1002/0471221112

18. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Trans. Antennas Propagat., Vol. 58, No. 7, 2442-2447, 2010.
doi:10.1109/TAP.2010.2048850

19. Schaubert, D. H., "A class of E-plane scan blindnesses in single-polarized arrays of tapered-slot antennas with a ground plane," IEEE Trans. Antennas Propagat., Vol. 44, No. 7, 954-959, 1996.
doi:10.1109/8.504301

20. Munk, B. A., Finite Antenna Arrays and FSS, Wiley, New York, 2003.
doi:10.1002/0471457531

21. Hansen, R. C., "Current induced on a wire: Implications for connected arrays," IEEE Antennas Wireless Propag. Lett., 288-289, 2003.
doi:10.1109/LAWP.2003.822199

22. Hansen, R. C., "Linear connected arrays," IEEE Antennas Wireless Propag. Lett., 154-156, 2004.
doi:10.1109/LAWP.2004.832125

23. Georgia Technology Research Corporation, , [Online]. Available: http://www.gtri.gatech.edu/casestudy/100-1-bandwidth.

24. Lee, J. J., S. Livingston, and R. Koenig, "Wide band long slot array antennas," Proc. Antennas Propagation Soc. Int. Symp., 452-455, Columbus, OH, 2003.

25. Neto, A. and J. J. Lee, "Infinite bandwidth long slot array antenna," IEEE Antennas Wireless Propag. Lett., Vol. 4, 75-78, 2005.
doi:10.1109/LAWP.2005.844141

26. Neto, A. and J. J. Lee, "Ultrawide-band properties of long slot arrays," IEEE Trans. Antennas Propagat., Vol. 54, No. 2, 534-543, 2006.
doi:10.1109/TAP.2005.863140

27. Wheeler, H. A., "Simple relations derived from a phased array antenna made of an infinite current sheet," IEEE Trans. Antennas Propagat., Vol. 13, No. 4, 506-514, 1965.
doi:10.1109/TAP.1965.1138456

28. Lee, J. J., S. Livingston, R. Koenig, D. Nagata, and L. L. Lai, "Compact light weight UHF arrays using long slot apertures," IEEE Trans. Antennas Propagat., Vol. 54, No. 7, 2009-2015, 2006.
doi:10.1109/TAP.2006.877169

29. Zhang, Y. and K. B. Anthony, "Octagonal ring antenna for a compact dual-polarized aperture array," IEEE Trans. Antennas Propagat., Vol. 59, No. 10, 3927-3932, 2011.
doi:10.1109/TAP.2011.2163742

30. Ansoft Corporation HFSS, , [Online]. Available: http://www.ansoft.com /products/hf/hfss/.
doi:10.1109/TAP.2011.2163742

31. Zhang, H., X.-W. Shi, F. Wei, and L. Xu, "Compact wideband GYSEL power divider with arbitrary power division based on patch type structure," Progress In Electromagnetics Research, Vol. 119, 395-406, 2011.
doi:10.2528/PIER11071501

32. Lin, Z. and Q.-X. Chu, "A novel approach to the design of dual-band power divider with variable power dividing ratio based on coupled-lines," Progress In Electromagnetics Research, Vol. 103, 271-284, 2010.
doi:10.2528/PIER10012202

33. Wu, Y., Y. Liu, S. Li, C. Yu, and X. Liu, "Closed-form design method of an N-way dual-band wilkinson hybrid power divider," Progress In Electromagnetics Research, Vol. 101, 97-114, 2010.
doi:10.2528/PIER09111906

34. Al-Zayed, A. S. and S. F. Mahmoud, "Seven ports power divider with various power division ratios," Progress In Electromagnetics Research, Vol. 114, 383-393, 2011.

35. Nearfield Systems Inc., , [Online]. Available: http://www.near¯eld.com.

36. Cavallo, D., A. Neto, and G. Gerini, "PCB slot based transformers to avoid common-mode resonances in connected arrays of dipoles," IEEE Trans. Antennas Propagat., Vol. 58, No. 8, 2767-2771, 2010.
doi:10.1109/TAP.2010.2050430


© Copyright 2014 EMW Publishing. All Rights Reserved