PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 124 > pp. 151-162

PROPOSAL OF CYLINDRICAL ROLLED-UP METAMATERIAL LENSES FOR MAGNETIC RESONANCE IMAGING APPLICATION AND PRELIMINARY EXPERIMENTAL DEMONSTRATION

By Y. Xie, J. Jiang, and S. He

Full Article PDF (1,221 KB)

Abstract:
In this paper, we propose a cylindrical rolled-up negative permeability metamaterial (MM) lens for magnetic resonance imaging (MRI), and some analyses are given. The proposed cylindrical MM lens is fabricated by rolling a MM slab (constituted with capacitive-loaded copper split rings) into a tube that resembles a hollow ring. It can focus the field of a magnetic line source, which can increase the penetration depth and improve the sensitivity of a surface coil. The proposed cylindrical MM lens can also improve the discrimination of the signals coming from two independent sources. A clinical experiment is carried out in a General Electric Signa 1.5 T MRI system in order to verify the focusing ability of the proposed device.

Citation:
Y. Xie, J. Jiang, and S. He, "Proposal of Cylindrical Rolled-Up Metamaterial Lenses for Magnetic Resonance Imaging Application and Preliminary Experimental Demonstration," Progress In Electromagnetics Research, Vol. 124, 151-162, 2012.
doi:10.2528/PIER11121402
http://www.jpier.org/PIER/pier.php?paper=11121402

References:
1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letter, Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Hornak, J. P., "The Basics of MRI,", URL, http://www.cis.rit.edu/htbooks/mri/index.html, 1996.

3. Freire, M. J., L. Jelinek, R. Marques, and M. Lapine, "On the applications of μ= -1 metamaterial lenses for magnetic resonance imaging," Journal of Magnetic Resonance, Vol. 203, 81, 2010.
doi:10.1016/j.jmr.2009.12.005

4. Freire, M. J., R. Marques, and L. Jelinek, "Experimental demonstration of a μ= -1 metamaterial lens for magnetic resonance imaging," Applied Physics Letter, Vol. 93, 231108, 2008.
doi:10.1063/1.3043725

6. Wiltshire, M. C. K., J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science, Vol. 291, No. 5505, 2001.
doi:10.1126/science.291.5505.849

7. Radu, X., D. Garray, and C. Craeye, "Toward a wire medium endoscope for MRI imaging," Metamaterials, Vol. 3, No. 2, 90-99, 2009.
doi:10.1016/j.metmat.2009.07.005

8. Wiggins, G. C., J. R. Polimeni, A. Potthast, M. Schmitt, V. Alagappan, and L. L. Wald, "96-channel receive-only head coil for 3 Tesla: design optimization and evaluation," Magnetic Resonance in Medicine, Vol. 62, No. 3, 754-762, 2009.
doi:10.1002/mrm.22028

9. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 2002.
doi:10.1109/TBME.2002.800759

10. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504

11. Insko, E. K., M. A. Elliott, J. C. Schotland, and J. S. Leigh, "Generalized reciprocity," Journal of Magnetic Resonance, Vol. 131, No. 111, 1998.

12. Baena, J. D., L. Jelinek, R. Marques, and M. Silveirinha, "Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials," Physical Review A, Vol. 78, 013842, 2008.
doi:10.1103/PhysRevA.78.013842

13. Rennings, A., P. Schneider, S. Otto, D. Erni, C. Caloz, and M. E. Ladd, "A CRLH zeroth-order resonant antenna (ZORA) with high near-¯eld polarization purity used as an RF coil element for ultra high field MRI," Metamaterials, 13-16, 2010.

14. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401

15. Lapine, M., L. Jelinek, M. J. Freire, and R. Marques, "Realistic metamaterial lenses: Limitations imposed by discrete structure," Physical Review B, Vol. 82, 165124, 2010.
doi:10.1103/PhysRevB.82.165124

16. Sydoruk, O., E. Tatartschuk, E. Shamonina, and L. Solymar, "Resonant frequency of singly split single ring resonators: An analytical and numerical study," Metamaterials, 632-634, 2008.

17. Algarin, J. M., M. J. Freire, M. A. Lopez, M. Lapine, P. M. Jakob, V. C. Behr, and R. Marques, "Analysis of the resolution of split-ring metamaterial lenses with application in parallel magnetic resonance imaging," Applied Physics Letter, Vol. 98, 014105, 2011.
doi:10.1063/1.3533394

18. Joines, W. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, 547, 1994.


© Copyright 2014 EMW Publishing. All Rights Reserved