Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 124 > pp. 511-525


By Y. Gong, K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan

Full Article PDF (457 KB)

We report on an existence of a highly lossy interface mode (HLIM) in a designed plasmonic nanostructure for perfect absorption of the incident optical waves. Interactions between the single thin-metallic-layer ($TML$) and slits arrays for excitation of the HLIM in the proposed plasmonic absorber are investigated, and eigenfrequency formula for the HLIM is derived. Analytical and numerical results show that the HLIM is frequency-selective, opens a narrow and steep absorption band in photonic stopband of the slits arrays. Due to the HLIM lossy characteristic, surface plasmon polaritons are significantly trapped at the TML interface with absorption close to 100%.

Y. Gong, K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan, "Frequency-Selective Nanostructured Plasmonic Absorber by Highly Lossy Interface Mode," Progress In Electromagnetics Research, Vol. 124, 511-525, 2012.

1. Parsons, A. D. and D. J. Pedder, "Thin-film infrared absorber structures for advanced thermal detectors," J. Vac. Sci. Technol. A, Vol. 6, 1686-1689, 1988.

2. Hayden, O., R. Agarwal, and C. M. Lieber, "Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection," Nat. Mater., Vol. 5, 352-356, 2006.

3. Tian, B., X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature, Vol. 449, 885-889, 2007.

4. Richards, P. L., "Bolometers for infrared and millimeter waves," J. Appl. Phys., Vol. 76, No. 1, 1994.

5. Longhi, S., "Pi-symmetric laser absorber," Phys. Rev. A, Vol. 82, 031801, 2010.

6. Law, M., L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, "Nanowire dye-sensitized solar cells," Nat. Mater., Vol. 4, 455-459, 2005.

7. Zukalova, M., A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska, and M. Gratzel, "Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells," Nano Lett., Vol. 5, 1789-1792, 2005.

8. Yang, Z. P., L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an extremely dark material made by a low-density nanotube array," Nano Lett., Vol. 8, 446, 2008.

9. Kravets, V. G., S. Neubeck, A. N. Grigorenko, and A. F. Kravets, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B, Vol. 81, 165401, 2010.

10. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B, Vol. 79, 045131, 2009.

11. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.

12. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabricated and characterization," Phys. Rev. B, Vol. 78, 241103, 2008.

13. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.

14. Cia, M. N., V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetics Research, Vol. 118, 287-301, 2011.

15. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108, 2009.

16. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.

17. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

18. Hao, J. M., J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Appl. Phys. Lett., Vol. 96, 251104, 2010.

19. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111, 2009.

20. Jiang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating," ACS Nano., Vol. 5, 4641-4647, 2011.

21. He, X. J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

22. Rephaeli, E. and S. Fan, "Tungsten black absorber for solar light with wide angular operation range," Appl. Phys. Lett., Vol. 92, 211107, 2008.

23. Yang, J., X. H. Hu, X. Li, Z. Liu, Z. X. Liang, X. Y. Jiang, and J. Zi, "Broadband absorption enhancement in anisotropic metamaterials by mirror reflections," Phys. Rev. B, Vol. 80, 125103, 2009.

24. Veronis, G., R. W. Dutton, and S. H. Fan, "Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range," J. Appl. Phys., Vol. 97, 093104, 2005.

25. Sai, H. and H. Yugami, "Thermophotovoltaic generation with selective radiators based on tungsten surface gratings," Appl. Phys. Lett., Vol. 85, 3399, 2004.

26. Liu, X. L., T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the blackbody with infrared metamaterials as selective thermal emitters," Phys. Rev. Lett., Vol. 107, 045901, 2011.

27. Gong, Y. K., Z. Y. Li, J. J. Fu, Y. H. Chen, G. X. Wang, H. Lu, L. R. Wang, and X. M. Liu, "Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect," Opt. Express, Vol. 19, 10193-10198, 2011.

28. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. SĂ„onnichsen, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.

29. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403, 2010.

30. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, 1103-1107, 2010.

31. Xu, X., B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, "Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing," Nano Lett., Vol. 11, 3232-3238, 2011.

32. Lal, S., S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics, Vol. 1, 641-648, 2007.

33. Mayer, K. M. and J. H. Hafner, "Localized surface plasmon resonance sensors," ACS Nano., Vol. 111, 3828-3857, 2011.

34. Dionne, J. A., L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B, Vol. 73, 035407-035415, 2006.

35. Hill, M. T., M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. H. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express, Vol. 17, 11107-11112, 2009.

36. Gong, Y. K., L. R. Wang, X. H. Hu, X. H. Li, and X. M. Liu, "Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide," Optics Express, Vol. 17, 13727-13736, 2009.

37. Neutens, P., P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, "Electrical detection of confined gap plasmons in metal-insulator-metal waveguides," Nat. Photonics, Vol. 3, 283-286, 2009.

38. Shin, H. and S. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett., Vol. 96, 073907, 2006.

39. Davoyan, A. R., I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, "Nonlinear nanofocusing in tapered plasmonic waveguides," Phys. Rev. Lett., Vol. 105, 116804, 2010.

40. Capmany, J., M. A. Muriel, and S. Sales, J. J. Rubio, D. Pastor, "Microwave V-I transmission matrix formalism for the analysis of photonic circuits: Application to fiber bragg gratings," J. Lightwave Technol., Vol. 21, 3125-3134, 2003.

41. Pannipitiya, A., I. D. Rukhlenko, and M. Premaratne, "Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions," IEEE. J. Phot., Vol. 3, 220-233, 2011.

42. Shelykh, I. A., M. Kaliteevski, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, "Interface photonic states at the boundary between a metal and a dielectric Bragg mirror," Phys. Stat. Sol. A, Vol. 204, 522, 2007.

43. Vinogradov, A. P., A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, "Surface state peculiarities in one-dimensional photonic crystal interfaces," Phys. Rev. B, Vol. 74, 045128, 2006.

44. Kavokin, A. V., I. A. Shelykh, and G. Malpuech, "Lossless interface modes at the boundary between two periodic dielectric structures," Phys. Rev. B, Vol. 72, 075127, 2005.

45. Kang, X., W. Tan, Z. Wang, and H. Chen, "Optic Tamm states: The Bloch-wave-expansion method," Phys. Rev. A, Vol. 79, 043832, 2009.

46. Yanik, A. A., M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, "An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media," Nano Lett., Vol. 10, 4962-4969, 2010.

© Copyright 2014 EMW Publishing. All Rights Reserved