PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 124 > pp. 511-525

FREQUENCY-SELECTIVE NANOSTRUCTURED PLASMONIC ABSORBER BY HIGHLY LOSSY INTERFACE MODE

By Y. Gong, K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan

Full Article PDF (457 KB)

Abstract:
We report on an existence of a highly lossy interface mode (HLIM) in a designed plasmonic nanostructure for perfect absorption of the incident optical waves. Interactions between the single thin-metallic-layer ($TML$) and slits arrays for excitation of the HLIM in the proposed plasmonic absorber are investigated, and eigenfrequency formula for the HLIM is derived. Analytical and numerical results show that the HLIM is frequency-selective, opens a narrow and steep absorption band in photonic stopband of the slits arrays. Due to the HLIM lossy characteristic, surface plasmon polaritons are significantly trapped at the TML interface with absorption close to 100%.

Citation:
Y. Gong, K. Li, J. Huang, N. J. Copner, A. Davies, L. Wang, and T. Duan, "Frequency-Selective Nanostructured Plasmonic Absorber by Highly Lossy Interface Mode," Progress In Electromagnetics Research, Vol. 124, 511-525, 2012.
doi:10.2528/PIER11121903
http://www.jpier.org/PIER/pier.php?paper=11121903

References:
1. Parsons, A. D. and D. J. Pedder, "Thin-film infrared absorber structures for advanced thermal detectors," J. Vac. Sci. Technol. A, Vol. 6, 1686-1689, 1988.
doi:10.1116/1.575308

2. Hayden, O., R. Agarwal, and C. M. Lieber, "Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection," Nat. Mater., Vol. 5, 352-356, 2006.
doi:10.1038/nmat1635

3. Tian, B., X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature, Vol. 449, 885-889, 2007.
doi:10.1038/nature06181

4. Richards, P. L., "Bolometers for infrared and millimeter waves," J. Appl. Phys., Vol. 76, No. 1, 1994.
doi:10.1063/1.357128

5. Longhi, S., "Pi-symmetric laser absorber," Phys. Rev. A, Vol. 82, 031801, 2010.
doi:10.1103/PhysRevA.82.031801

6. Law, M., L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, "Nanowire dye-sensitized solar cells," Nat. Mater., Vol. 4, 455-459, 2005.
doi:10.1038/nmat1387

7. Zukalova, M., A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska, and M. Gratzel, "Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells," Nano Lett., Vol. 5, 1789-1792, 2005.
doi:10.1021/nl051401l

8. Yang, Z. P., L. J. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, "Experimental Observation of an extremely dark material made by a low-density nanotube array," Nano Lett., Vol. 8, 446, 2008.
doi:10.1021/nl072369t

9. Kravets, V. G., S. Neubeck, A. N. Grigorenko, and A. F. Kravets, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B, Vol. 81, 165401, 2010.
doi:10.1103/PhysRevB.81.165401

10. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B, Vol. 79, 045131, 2009.
doi:10.1103/PhysRevB.79.045131

11. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

12. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabricated and characterization," Phys. Rev. B, Vol. 78, 241103, 2008.
doi:10.1103/PhysRevB.78.241103

13. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401

14. Cia, M. N., V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetics Research, Vol. 118, 287-301, 2011.

15. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108, 2009.
doi:10.1103/PhysRevB.80.033108

16. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

17. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

18. Hao, J. M., J. Wang, X. L. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Appl. Phys. Lett., Vol. 96, 251104, 2010.
doi:10.1063/1.3442904

19. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111, 2009.
doi:10.1063/1.3276072

20. Jiang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating," ACS Nano., Vol. 5, 4641-4647, 2011.
doi:10.1021/nn2004603

21. He, X. J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

22. Rephaeli, E. and S. Fan, "Tungsten black absorber for solar light with wide angular operation range," Appl. Phys. Lett., Vol. 92, 211107, 2008.
doi:10.1063/1.2936997

23. Yang, J., X. H. Hu, X. Li, Z. Liu, Z. X. Liang, X. Y. Jiang, and J. Zi, "Broadband absorption enhancement in anisotropic metamaterials by mirror reflections," Phys. Rev. B, Vol. 80, 125103, 2009.
doi:10.1103/PhysRevB.80.125103

24. Veronis, G., R. W. Dutton, and S. H. Fan, "Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range," J. Appl. Phys., Vol. 97, 093104, 2005.
doi:10.1063/1.1889248

25. Sai, H. and H. Yugami, "Thermophotovoltaic generation with selective radiators based on tungsten surface gratings," Appl. Phys. Lett., Vol. 85, 3399, 2004.
doi:10.1063/1.1807031

26. Liu, X. L., T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, "Taming the blackbody with infrared metamaterials as selective thermal emitters," Phys. Rev. Lett., Vol. 107, 045901, 2011.
doi:10.1103/PhysRevLett.107.045901

27. Gong, Y. K., Z. Y. Li, J. J. Fu, Y. H. Chen, G. X. Wang, H. Lu, L. R. Wang, and X. M. Liu, "Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect," Opt. Express, Vol. 19, 10193-10198, 2011.
doi:10.1364/OE.19.010193

28. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. SĂ„onnichsen, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.
doi:10.1021/nl9041033

29. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403, 2010.
doi:10.1103/PhysRevLett.104.207403

30. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, 1103-1107, 2010.
doi:10.1021/nl902621d

31. Xu, X., B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, "Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing," Nano Lett., Vol. 11, 3232-3238, 2011.
doi:10.1021/nl2014982

32. Lal, S., S. Link, and N. J. Halas, "Nano-optics from sensing to waveguiding," Nat. Photonics, Vol. 1, 641-648, 2007.
doi:10.1038/nphoton.2007.223

33. Mayer, K. M. and J. H. Hafner, "Localized surface plasmon resonance sensors," ACS Nano., Vol. 111, 3828-3857, 2011.

34. Dionne, J. A., L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B, Vol. 73, 035407-035415, 2006.
doi:10.1103/PhysRevB.73.035407

35. Hill, M. T., M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. H. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Express, Vol. 17, 11107-11112, 2009.
doi:10.1364/OE.17.011107

36. Gong, Y. K., L. R. Wang, X. H. Hu, X. H. Li, and X. M. Liu, "Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide," Optics Express, Vol. 17, 13727-13736, 2009.
doi:10.1364/OE.17.013727

37. Neutens, P., P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, "Electrical detection of confined gap plasmons in metal-insulator-metal waveguides," Nat. Photonics, Vol. 3, 283-286, 2009.
doi:10.1038/nphoton.2009.47

38. Shin, H. and S. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett., Vol. 96, 073907, 2006.
doi:10.1103/PhysRevLett.96.073907

39. Davoyan, A. R., I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, "Nonlinear nanofocusing in tapered plasmonic waveguides," Phys. Rev. Lett., Vol. 105, 116804, 2010.
doi:10.1103/PhysRevLett.105.116804

40. Capmany, J., M. A. Muriel, and S. Sales, J. J. Rubio, D. Pastor, "Microwave V-I transmission matrix formalism for the analysis of photonic circuits: Application to fiber bragg gratings," J. Lightwave Technol., Vol. 21, 3125-3134, 2003.
doi:10.1109/JLT.2003.819797

41. Pannipitiya, A., I. D. Rukhlenko, and M. Premaratne, "Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions," IEEE. J. Phot., Vol. 3, 220-233, 2011.
doi:10.1109/JPHOT.2011.2126566

42. Shelykh, I. A., M. Kaliteevski, A. V. Kavokin, S. Brand, R. A. Abram, J. M. Chamberlain, and G. Malpuech, "Interface photonic states at the boundary between a metal and a dielectric Bragg mirror," Phys. Stat. Sol. A, Vol. 204, 522, 2007.
doi:10.1002/pssa.200673231

43. Vinogradov, A. P., A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, "Surface state peculiarities in one-dimensional photonic crystal interfaces," Phys. Rev. B, Vol. 74, 045128, 2006.
doi:10.1103/PhysRevB.74.045128

44. Kavokin, A. V., I. A. Shelykh, and G. Malpuech, "Lossless interface modes at the boundary between two periodic dielectric structures," Phys. Rev. B, Vol. 72, 075127, 2005.

45. Kang, X., W. Tan, Z. Wang, and H. Chen, "Optic Tamm states: The Bloch-wave-expansion method," Phys. Rev. A, Vol. 79, 043832, 2009.
doi:10.1103/PhysRevA.79.043832

46. Yanik, A. A., M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, "An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media," Nano Lett., Vol. 10, 4962-4969, 2010.
doi:10.1021/nl103025u


© Copyright 2014 EMW Publishing. All Rights Reserved