PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 125 > pp. 503-526

ELECTROMAGNETIC AND THERMAL ANALYSES OF IMPROVED GTEM CELLS FOR BIOELECTROMAGNETIC EXPERIMENTS

By G. Calo and V. Petruzzelli

Full Article PDF (1,519 KB)

Abstract:
A GHz Transverse Electromagnetic (GTEM) cell is proposed to investigate the arising of biological effects due to electromagnetic signals at the typical frequencies of mobile phone communications. The proposed GTEM cell, placed within a commercial incubator, has been ad hoc designed and fabricated to expose in vitro samples. The electromagnetic and the thermal analyses of the GTEM cell are reported. In particular, the inner electromagnetic field and the Specific Absorption Rate of the exposed sample (saline solution having 9 g/l concentration) have been evaluated by a home-made computer code based on the transmission line matrix method. Furthermore, the thermal analysis of the exposure arrangement has been carried out by the finite difference time domain algorithm.

Citation:
G. Calo and V. Petruzzelli, "Electromagnetic and Thermal Analyses of Improved Gtem Cells for Bioelectromagnetic Experiments," Progress In Electromagnetics Research, Vol. 125, 503-526, 2012.
doi:10.2528/PIER11122206
http://www.jpier.org/PIER/pier.php?paper=11122206

References:
1. Bozzetti, M., G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Optimized design of GTEM cells for dosimetric experiments," Radio Science, Vol. 42, RS3017, 2007.
doi:10.1029/2006RS003457

2. Schuderer, J., T. Samaras, W. Oesch, D. Spät, and N. Kuster, "High peak SAR exposure unit with tight exposure and environmental control for in vitro experiments at 1800 MHz," IEEE Trans. Microwave Theory Tech., Vol. 52, 2057-2066, 2004.
doi:10.1109/TMTT.2004.832009

3. Laval, L., P. Leveque, and B. Jecko, "A new in vitro exposure device for the mobile frequency of 900 MHz," Bioelectromagnetics, Vol. 21, 255-263, 2000.
doi:10.1002/(SICI)1521-186X(200005)21:4<255::AID-BEM2>3.0.CO;2-4

4. Merola, P., C. Marino, G. A. Lovisolo, R. Pinto, C. Laconi, and A. Negroni, "Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field," Bioelectromagnetics, Vol. 27, 164-171, 2006.
doi:10.1002/bem.20201

5. Balzano, Q., C. Chou, R. Cicchetti, A. Faraone, and R. Y.-S. Tay, "An efficient RF exposure system with precise whole-body average SAR determination for in vivo animal studies at 900 MHz," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, Part 2, 2040--2049, 2000.

6. Schonborn, F., K. Pokovic, and N. Kuster, "Dosimetric analysis of the carousel setup for the exposure of rats at 1.62 GHz," Bioelectromagnetics, Vol. 25, 16-26, 2004.
doi:10.1002/bem.10153

7. Biagi, P. F., L. Castellana, T. Maggipinto, G. Maggipinto, T. Ligonzo, L. Schiavulli, D. Loiacono, A. Ermini, M. Lasalvia, G. Perna, and V. Capozzi, "A reverberation chamber to investigate the possible effects of in vivo exposure of rats to 1.8 GHz electromagnetic fields: A preliminary study," Progress In Electromagnetics Research, Vol. 94, 133-152, 2009.
doi:10.2528/PIER09061006

8. Zhen, J., C. Hagness, H. Booske, S. Mathur, and M. L. Meltz, "FDTD analysis of a gigahertz TEM cell for ultra-wideband pulse exposure studies of biological specimens," IEEE Trans. Biomed. Eng., Vol. 53, No. 5, 780-789, 2006.
doi:10.1109/TBME.2005.863959

9. Zmyslony, M., P. Politanski, E. Rajkowska, W. Szymczak, and J. Jajte, "Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions," Bioelectromagnetics, Vol. 25, 324-328, 2004.
doi:10.1002/bem.10191

10. Bakos, J., G. Kubinyi, H. Sinay, and G. Thuroczy, "GSM modulated radiofrequency radiation does not affect 6-sulfatoxymelatonin excretion of rats," Bioelectromagnetics, Vol. 24, 531-534, 2003.
doi:10.1002/bem.10172

11. Liu, Y., Z. Liang, and Z.-Q. Yang, "Computation of electromagnetic dosimetry for human body using parallel FDTD algorithm combined with interpolation technique," Progress In Electromagnetics Research, Vol. 82, 95-107, 2008.
doi:10.2528/PIER08021603

12. Zhang, M. and A. Alden, "Calculation of whole-body SAR from a 100MHz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.
doi:10.2528/PIER11052005

13. Yanase, K. and A. Hirata, "Effective resistance of grounded humans for whole-body averaged SAR estimation at resonance frequencies," Progress In Electromagnetics Research B, Vol. 35, 15-27, 2011.
doi:10.2528/PIERB11082511

14. Taflove, A. and M. E. Brodwin, "Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 11, 888-896, 1975.
doi:10.1109/TMTT.1975.1128708

15. Mohsin, S. A., "Concentration of the specific absorption rate around deep brain stimulation electrodes during MRI," Progress In Electromagnetics Research, Vol. 121, 469-484, 2011.
doi:10.2528/PIER11022402

16. Vita, A. De, R. P. Croce, I. M. Pinto, and B. Bisceglia, "Nonlinear interaction of electromagnetic radiation at the cell membrane level: Response to stochastic fields," Progress In Electromagnetics Research B, Vol. 33, 45-67, 2011.
doi:10.2528/PIERB11053005

17. Angulo, L. D., S. G. Garcia, M. F. Pantoja, C. C. Sanchez, and R. G. Martìn, "Improving the SAR distribution in petri-dish cell cultures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 815-826, 2010.
doi:10.1163/156939310791036322

18. Garbe, H. and D. Hansen, "The GTEM cell concept; applications of this new EMC test environment to radiated emission and susceptibility measurements," Proc. 7th Int. Conf. Electromagnetic Compatibility, 152-156, 1990.

19. Christopoulos, C., The Transmission-Line Modelling Method TLM, University of Nottingham, IEEE Press, New York, 1995.
doi:10.1109/9780470546659

20. Hang, J. and R. Vahldieck, "Direct derivations of TLM symmetrical condensed node and hybrid symmetrical condensed node from Maxwell's equations using centered differencing and averaging," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2554-2561, 1994.
doi:10.1109/22.339796

21. Bozzetti, M., G. Calò, A. D'Orazio, V. Petruzzelli, F. Prudenzano, N. Diaferia, and C. Bonaventura, "Mode-stirred chamber for cereal disinfestation," Materials Research Innovations, Vol. 8, 17-22, 2004.

22. Lizhuang, M., D. Paul, N. Pothecary, C. Railton, J. Bows, L. Barratt, J. Mullin, and D. Simons, "Experimental validation of a combined electromagnetic and thermal FDTD model of a microwave heating process," IEEE Trans. Microwave Theory Tech., Vol. 43, 2565-2572, 1995.
doi:10.1109/22.473179

23. Calò, G., F. Lattarulo, and V. Petruzzelli, "GTEM Cell experimental setup for in vitro dosimetry," Journal of Communications Software and Systems, Vol. 3, No. 1, 34-43, 2007.

24. De Leo, R., T. Rozzi, C. Svara, and L. Zappelli, "Rigorous analysis of the GTEM cell," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, 488-499, 1991.
doi:10.1109/22.75291

25. IEC 61000-4-3, "Electromagnetic compatibility (EMC) testing and measurement techniques --- Radiated, radio-frequency, electromagnetic field immunity test,", 2003.

26. Pickard, W. F., W. L. Straube, and E. G. Moros, "Experimental and numerical determination of SAR distributions within culture flasks in a dielectric loaded radial transmission line," IEEE Trans. Biomed. Eng., Vol. 47, No. 2, 202-208, Feb. 2000.
doi:10.1109/10.821756

27. Lim, H. B., G. G. Cook, A. T. Barker, and L. A. Coulton, "FDTD design of RF dosimetry apparatus to quantify the effects of near fields from mobile handsets on stress response mechanisms of human whole blood," Int. J. Numer. Model., Vol. 15, 563-577, 2002.
doi:10.1002/jnm.465

28. Holman, J. (ed.), Heat Transfer, 7th Ed., McGraw-Hill, New York, 1990.

29. Incropera, F. P. and D. P. De Witt, Introduction to Heat Transfer, 2nd Ed., John Wiley & Sons, New York, 1990.


© Copyright 2014 EMW Publishing. All Rights Reserved