PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 124 > pp. 315-329

HYDROSTATIC PRESSURE SENSOR BASED ON A GOLD-COATED FIBER MODAL INTERFEROMETER USING LATERAL OFFSET SPLICING OF SINGLE MODE FIBER

By D. Chen and X. Cheng

Full Article PDF (403 KB)

Abstract:
A novel hydrostatic pressure sensor based on a gold-coated fiber modal interferometer (FMI) is proposed and demonstrated. Two single mode fibers (SMFs) are spliced with a lateral offset which forms a single-end FMI. The single-end FMI is gold-coated to enhance the reflectivity and to avoid the influence of any unwanted light from getting into the sensor. Relative reflection spectra of the proposed FMIs with different sensing SMF lengths or different lateral offsets are experimentally investigated. A high hydrostatic pressure sensor test system is proposed for the testing of the proposed FMI pressure sensor. The performance of a gold-coated FMI pressure sensor based on a 12-mm sensing SMF has been experimentally investigated. The proposed pressure sensor has a sensing range from 0 to 42 MPa and a sensitivity of 53 pm/MPa.

Citation:
D. Chen and X. Cheng, "Hydrostatic Pressure Sensor Based on a Gold-Coated Fiber Modal Interferometer Using Lateral Offset Splicing of Single Mode Fiber," Progress In Electromagnetics Research, Vol. 124, 315-329, 2012.
doi:10.2528/PIER11122307
http://www.jpier.org/PIER/pier.php?paper=11122307

References:
1. Nikles, M., L. Thevenaz, and P. A. Robert, "Simple distributed fiber sensor based on Brillouin gain spectrum analysis," Opt. Lett., Vol. 21, 758-760, 1996.
doi:10.1364/OL.21.000758

2. Kersey, A. D., M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Ashins, M. A. Putnam, and E. J. Friebele , "Fiber grating sensors," J. Lightw. Technol., Vol. 15, 1442-1463, 1997.
doi:10.1109/50.618377

3. Hill, K. O. and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol., Vol. 5, 1263-1276, 1997.
doi:10.1109/50.618320

4. Farahani, M. A. and T. Gogolla, "Spontaneous raman scattering in optical fibers with modulated probe light for distributed temperature raman remote sensing," J. Lightw. Technol., Vol. 17, 1379-1391, 1999.
doi:10.1109/50.779159

5. Guan, B.-O., H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, "Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating," IEEE Photon. Technol. Lett., Vol. 12, 675-677, 2000.
doi:10.1109/68.849081

6. Culshaw, B., "Optical fiber sensor technologies: Opportunities and - perhaps - pitfalls," J. Lightw. Technol., Vol. 22, 39-50, 2004.
doi:10.1109/JLT.2003.822139

7. Chen, D., C. Shu, and S. He, "Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode locking fiber laser ," Opt. Lett., Vol. 33, 1395-1397, 2008.
doi:10.1364/OL.33.001395

8. Chen, D., W. Liu, M. Jiang, and S. He, "High resolution strain/temperature sensor system based on high finesse fiber Bragg grating Fabry-Perot cavity and wavelength demodulation in the time domain," J. Lightw. Technol., Vol. 27, 2477-2481, 2009.
doi:10.1109/JLT.2008.2011498

9. Liu, S. C., Z. W. Yin, L. Zhang, X. F. Chen, L. Gao, and J. C. Cheng, "Dual-wavelength FBG laser sensor based on photonic generation of radio frequency demodulation technique," Journal of Electromagnetic Waves Applications, Vol. 23, No. 16, 2177-2185, 2009.
doi:10.1163/156939309790109252

10. Sun, N.-H., J.-J. Liau, Y.-W. Kiang, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, and H.-W. Chang, "Numerical analysis of apodized fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 99, 289-306, 2009.
doi:10.2528/PIER09102704

11. Liau, J.-J., N.-H. Sun, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, C.-L. Pan, and H.-W. Chang, "A new look at numerical analysis of uniform fiber Bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 93, 385-401, 2009.
doi:10.2528/PIER09031102

12. Wang, B., G. Somesfalean, L. Mei, H. Zhou, C. Yan, and S. He, "Detection of gas concentration by correlation spectroscopy using a multi-wavelength fiber laser," Progress In Electromagnetics Research, Vol. 114, 469-479, 2011.

13. Ni, J., X. M. Zhang, S. L. Zheng, X. F. Jin, H. Chi, and X. M. Zhang, "Microwave frequency measurement based on phase modulation to intensity modulation conversion using fiber Bragg grating," Journal of Electromagnetic Waves Applications, Vol. 25, No. 5, 755-764, 2011.
doi:10.1163/156939311794827195

14. Bock, W. J. and A. W. Domanski, "Highly hydrostatic pressure effects in highly birefringent optical fibers," J. Lightw. Technol., Vol. 7, 1279-1283, 1989.
doi:10.1109/50.32394

15. Charasse, M. N., M. Turpin, and J. P. Le Pesant, "Dynamic pressure sensing with a side-hole birefringent optical fiber," Opt. Lett., Vol. 16, 1043-1045, 1991.
doi:10.1364/OL.16.001043

16. Clowes, J. R., S. Syngellakis, and M. N. Zervas, "Pressure sensitivity of side-hole optical fiber sensors," IEEE Photon. Technol. Lett., Vol. 10, 857-859, 1998.
doi:10.1109/68.681509

17. Fu, H. Y., H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, "Pressure sensor realized with polarization-maintaining photonic crystal fier-based Sagnac interferometer," Appl. Opt., Vol. 47, 2835-2839, 2008.
doi:10.1364/AO.47.002835

18. Wu, C., B. O. Guan, Z. Wang, and X. Feng, "Characterization of pressure response of Bragg gratings in grapefruit microstructured fibers," J. Lightw. Technol., Vol. 28, 1392-1397, 2010.

19. Szczurowski, M. K., T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and D. J. Webb, "Measurements of polarimentric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fiber," Opt. Express, Vol. 18, 12076-12087, 2010.
doi:10.1364/OE.18.012076

20. Fu, H. Y., C. Wu, M. L. V. Tse, L. Zhang, K. C. D. Cheng, H. Y. Tam, B. O. Guan, and C. Lu, "High pressure sensor based on photonic crystal fiber for downhole application," Appl. Opt., Vol. 49, 2639-2644, 2010.
doi:10.1364/AO.49.002639

21. Martynkien, T., G. Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, "Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure," Opt. Express, Vol. 18, 15113-15121, 2010.
doi:10.1364/OE.18.015113

22. Chen, D., G. Hu, and L. Chen, "Dual-core photonic crystal fiber for hydrostatic pressure sensing," IEEE Photon. Technol. Lett., Vol. 23, 1851-1853, 2011.
doi:10.1109/LPT.2011.2170194

23. Chen, D., G. Hu, M.-L. V. Tse, and H. Y. Tam, "Dual-core side-hole fiber for pressure sensing based on intensity detection," Journal of Electromagnetic Waves Applications, Vol. 25, No. 5-6, 775-784, 2011.
doi:10.1163/156939311794827140

24. Chen, D., M. L. V. Tse, C. Wu, G. Hu, H. Y. Tam, and L. Gao, "Highly birefringent four-hole fiber for pressure sensing," Progress In Electromagnetics Research, Vol. 114, 145-158, 2011.

25. Zhu, Y. and A. Wang, "Miniature fiber-optic pressure sensor," IEEE Photon. Technol. Lett., Vol. 17, 447-449, 2005.

26. Wang, X., J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, "All-fused-silica miniature optical fiber tip pressure sensor," Opt. Lett., Vol. 31, 885-887, 2006.
doi:10.1364/OL.31.000885

27. Wang, W., N. Wu, Y. Tian, C. Niezrecki, and X. Wang, "Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure," Opt. Express, Vol. 18, 9006-9014, 2010.
doi:10.1364/OE.18.009006

28. Knight, J. C., J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science,, Vol. 282, 1476-1478, 1998.
doi:10.1126/science.282.5393.1476

29. Knight, J. C. and P. S. J. Russell, "Photonic crystal fibers: New way to guide light," Science, Vol. 296, 276-277, 2002.
doi:10.1126/science.1070033

30. Knight, J. C., "Photonic crystal fibers," Nature, Vol. 424, 847-851, 2003.
doi:10.1038/nature01940

31. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309

32. Choudhury, P. K. and W. K. Soon, "TE mode propagation through tapered core liquid crystal optical fibers," Progress In Electromagnetics Research, Vol. 104, 449-463, 2010.
doi:10.2528/PIER10021104

33. Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russel, "Highly birefringent photonic crystal fibers," Opt. Lett., Vol. 25, 1325-1327, 2000.
doi:10.1364/OL.25.001325

34. Hansen, T. P., J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 13, 588-590, 2001.
doi:10.1109/68.924030

35. Steel, M. J. and R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett., Vol. 26, 229-231, 2001.
doi:10.1364/OL.26.000229

36. Steel, M. J. and R. M. Osgood, "Polarization and dispersive properties of elliptical-hole photonics crystal fibers," J. Lightw. Technol., Vol. 19, 495-503, 2001.
doi:10.1109/50.920847

37. Sapulak, M., G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wojcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, "Experimental and theoretical investigations of birefringent holey fibers with a triple defect," Appl. Opt., Vol. 44, 2652-2658, 2005.
doi:10.1364/AO.44.002652

38. Chen, D. and L. Shen, "Highly birefringent elliptical-hole photonic crystal fibers with double defect," J. Lightw. Technol., Vol. 25, 2700-2705, 2007.
doi:10.1109/JLT.2007.902114

39. Yue, Y., G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, "Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice," Opt. Lett., Vol. 32, 469-471, 2007.
doi:10.1364/OL.32.000469

40. Chen, D. and L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett., Vol. 19, 185-187, 2007.
doi:10.1109/LPT.2006.890040

41. Ferrando, A., E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett., Vol. 25, 790-792, 2000.
doi:10.1364/OL.25.000790

42. Ferrando, A., E. Silvestre, P. Andres, J. Miret, and M. Andres, "Designing the properties of dispersion-flattened photonic crystal fibers," Opt. Express, Vol. 9, 687-697, 2001.
doi:10.1364/OE.9.000687

43. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express, Vol. 11, 843-852, 2003.
doi:10.1364/OE.11.000843

44. Shen, L. P., W. P. Huang, and S. S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightw. Technol., Vol. 21, 1644-1651, 2003.
doi:10.1109/JLT.2003.814397

45. Gerome, F., J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett., Vol. 29, 2725-2727, 2004.
doi:10.1364/OL.29.002725

46. Poletti, F., V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express, Vol. 13, 3728-3736, 2005.
doi:10.1364/OPEX.13.003728

47. Huttunen, A. and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express, Vol. 13, 627-635, 2005.
doi:10.1364/OPEX.13.000627

48. Varshney, S. K., T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express, Vol. 14, 3528-3540, 2006.
doi:10.1364/OE.14.003528

49. Yang, S., Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express, Vol. 14, 3015-3023, 2006.
doi:10.1364/OE.14.003015

50. Agrawal, A., N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, "Golden spiral photonic crystal fiber: Polarization and dispersion properties," Opt. Lett., Vol. 33, 2716-2718, 2008.
doi:10.1364/OL.33.002716

51. Chen, D., M.-L. V. Tse, and H. Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.
doi:10.2528/PIER10042706

52. Ju, J., W. Jin, and M. S. Demokan, "Design of single-polarization single mode photonics crystal fibers," J. Lightw. Technol., Vol. 24, 825-830, 2001.

53. Saitoh, K. and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photon. Technol. Lett., Vol. 15, 1384-1340, 2003.
doi:10.1109/LPT.2003.818215

54. Kubota, H., S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, "Absolutely single polarization photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 16, 182-184, 2004.
doi:10.1109/LPT.2003.819415

55. Knight, J. C. and D. V. Skryabin, "Nonlinear waveguide optics and photonic crystal fibers," Opt. Express, Vol. 15, 15365-15376, 2007.
doi:10.1364/OE.15.015365

56. Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett., Vol. 28, 393-395, 2003.
doi:10.1364/OL.28.000393

57. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, 818-823, 2003.
doi:10.1364/OE.11.000818

58. Folkenberg, J., M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, "Polarization maintaining large mode area photonic crystal fiber," Opt. Express, Vol. 12, 956-960, 2004.
doi:10.1364/OPEX.12.000956

59. Wadsworth, W. J., J. C. Knight, W. H. Reewes, P. S. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Eletron. Lett., Vol. 36, 1452-1253, 2000.
doi:10.1049/el:20000942

60. Liu, X., X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, "Swithable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg grating and photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 17, 1626-1628, 2005.

61. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, 437-439, 2007.
doi:10.1002/lapl.200710003

62. Broderick, N. G. R., T. M. Monro, P. J. Bennett, and D. J. Richardson, "Nonlinearity in holey optical fibers: Measurement and future opportunities," Opt. Lett., Vol. 24, 1395-1397, 1999.
doi:10.1364/OL.24.001395

63. Zhu, Z. and T. G. Brown, "Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber ," Opt. Express, Vol. 12, 791-796, 2004.
doi:10.1364/OPEX.12.000791

64. Zhu, Z. and T. G. Brown, "Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B, Vol. 21, 249-257, 2004.
doi:10.1364/JOSAB.21.000249

65. Dudley, J. M. and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nature Photonics, Vol. 3, 85-90, 2009.
doi:10.1038/nphoton.2008.285

66. Dong, X. and H. Y. Tam, "Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer," Appl. Phys. Lett., Vol. 90, 151113-151115, 2007.
doi:10.1063/1.2722058

67. Ritari, T., J. Tuominen, H. Ludvigsen, J. C. Petersen, T. SΦrensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal bandgap fibers," Opt. Express, Vol. 12, 4080-4087, 2004.
doi:10.1364/OPEX.12.004080

68. Rindorf, L., J. B. Jensen, M. Dufva, L. H. Pedersen, P. T. HΦiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express, Vol. 14, 8224-8231, 2006.
doi:10.1364/OE.14.008224

69. Wu, D. K. C., B. T. Kuhlmey, and B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Opt. Lett., Vol. 34, 322-324, 2009.
doi:10.1364/OL.34.000322

70. Qian, W. W., C.-L. Zhao, S. L. He, X. Y. Dong, S. Q. Zhang, Z. X. Zhang, S. Z. Jin, J. T. Guo, and H. F. Wei , "High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror," Opt. Lett., Vol. 36, 1548-1550, 2011.
doi:10.1364/OL.36.001548

71. Chen, D., C. Wu, M.-L. V. Tse, and H. Y. Tam, "Hydrostatic pressure sensor based on mode interference of a few mode fiber," Progress In Electromagnetics Research, Vol. 119, 335-343, 2011.
doi:10.2528/PIER11071001


© Copyright 2014 EMW Publishing. All Rights Reserved