Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 125 > pp. 365-389


By M. Koba and P. Szczepanski

Full Article PDF (1,535 KB)

In this work, threshold mode structures of two-dimensional (2D) photonic crystal (PC) lasers are presented. The subjects of this paper are finite photonic crystal structures with circular holes arranged in square and triangular lattices. In each case, both transverse magnetic (TM) and transverse electric (TE) polarization are studied. The analysis is based on the coupled-wave equations and analyzes modes' behavior for the wide range of coupling coefficient values. The laser mode is characterized by threshold gain and frequency deviation, and these quantities depend on coupling constants, which means that the threshold gain of the mode and the mode's frequency deviation depend on the coupling constants. Presented analysis gives an interesting insight into behavior of the modes in photonic crystal lasers.

M. Koba and P. Szczepanski, "The threshold mode structure analysis of the two-dimensional photonic crystal lasers," Progress In Electromagnetics Research, Vol. 125, 365-389, 2012.

1. Miyai, E., K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature, Vol. 441, 946, 2006.

2. Sakai, K., E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, "Lasing band-edge identification for a surface-emitting photonic crystal laser," IEEE J. Sel. Areas Commun., Vol. 23, No. 7, 1335-1340, 2005.

3. Imada, M., S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett., Vol. 75, No. 3, 316-318, 1999.

4. Meier, M., A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett., Vol. 74, No. 1, 7-9, 1999.

5. Noda, S., M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design," Science, Vol. 293, No. 5532, 1123-1125, 2001.

6. Turnbull, G. A., P. Andrew, W. L. Barnes, and I. D. W. Samuel, "Operating characteristics of a semiconducting polymer laser pumped by a microchip laser," Appl. Phys. Lett., Vol. 82, No. 3, 313-315, 2003.

7. Vurgaftman, I. and J. R. Meyer, "Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers," IEEE J. Quantum Electron., Vol. 39, No. 6, 689-700, 2003.

8. Ohnishi, D., T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express, Vol. 12, No. 8, 1562-1568, 2004.

9. Matsubara, H., S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, "GaN photonic-crystal surface-emitting laser at blue-violet wavelengths," Science, Vol. 319, No. 5862, 445-447, 2008.

10. Lu, T. C., S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. Yu, H. C. Kuo, and S. C. Wang, "GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector," Appl. Phys. Lett., Vol. 92, No. 1, 0111291-3, 2008.

11. Kim, M., C. S. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, I. Vurgaftman, and J. R. Meyer, "Surface emitting photonic-crystal distributed-feedback laser for the midinfrared," Appl. Phys. Lett., Vol. 88, No. 19, 1911051-3, 2006.

12. Imada, M., A. Chutinan, S. Noda, and M. Mochizuki, "Multidirectionally distributed feedback photonic crystal lasers," Phys. Rev. B, Vol. 65, No. 19, 1953061-8, 2002.

13. Yokoyama, M. and S. Noda, "Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser," Opt. Express, Vol. 13, No. 8, 2869-2880, 2005.

14. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B, Vol. 44, No. 16, 8565-8571, 1991.

15. Sakai, K., E. Miyai, and S. Noda, "Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode," Appl. Phys. Lett., Vol. 89, No. 2, 0211011-3, 2006.

16. Sakai, K., E. Miyai, and S. Noda, "Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization," IEEE J. Quantum Electron., Vol. 46, No. 5, 788-795, 2010.

17. Sakai, K., E. Miyai, and S. Noda, "Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization," Opt. Express, Vol. 15, 3981-3990, 2007.

18. Sakai, K., J. Yue, and S. Noda, "Coupled-wave model for triangular-lattice photonic crystal with transverse electric polarization," Opt. Express, Vol. 16, No. 9, 6033-6040, 2008.

19. Koba, M., P. Szczepanski, and T. Kossek, "Nonlinear operation of a 2D triangular lattice photonic crystal laser," IEEE J. Quantum Electron., Vol. 47, No. 1, 13-19, 2011.

20. Scamarcio, G., F. Capasso, C. Sirtori, J. Faist, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "High-power infrared (8-micrometer wavelength) superlattice lasers," Science, Vol. 276, No. 5313, 773-776, 1997.

21. Kogelnik, H., "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J., Vol. 48, 2909-2947, 1969.

22. Kazarinov, R. and C. Henry, "Second-order distributed feedback lasers with mode selection provided by first-order radiation losses," IEEE J. Quantum Electron., Vol. 21, No. 2, 144-150, 1985.

23. Johnson, S. and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express, Vol. 8, No. 10, 173-190, 2001.

24. Liang, Y., C. Peng, K. Sakai, S. Iwahashi, and S. Noda, "Three-dimensional coupled-wave model for square-lattice photonic crystal lasers with transverse electric polarization: A general approach," Phys. Rev. B, Vol. 84, No. 19, 1951191-11, 2011.

25. Peng, C., Y. Liang, K. Sakai, S. Iwahashi, and S. Noda, "Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls," Opt. Express, Vol. 19, No. 24, 24672-24686, 2011.

© Copyright 2014 EMW Publishing. All Rights Reserved