PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 126 > pp. 65-84

SOLVING PERIODIC EIGENPROBLEMS BY SOLVING CORRESPONDING EXCITATION PROBLEMS IN THE DOMAIN OF THE EIGENVALUE

By T. F. Eibert, Y. Weitsch, H. Chen, and M. E. Gruber

Full Article PDF (1,400 KB)

Abstract:
Periodic eigenproblems describing the dispersion behavior of periodically loaded waveguiding structures are considered as resonating systems. In analogy to resonators, their eigenvalues and eigensolutions are determined by solving corresponding excitation problems directly in the domain of the eigenvalue. Arbitrary excitations can be chosen in order to excite the desired modal solutions, where in particular lumped ports and volumetric current distributions are considered. The method is employed together with a doubly periodic hybrid finite element boundary integral technique, which is able to consider complex propagation constants in the periodic boundary conditions and the Green's functions. Other numerical solvers such as commercial simulation packages can also be employed with the proposed procedure, where complex propagation constants are typically not directly supported. However, for propagating waves with relatively small attenuation, it is shown that the attenuation constant can be determined by perturbation methods. Numerical results for composite right/left-handed waveguides and for the leaky modes of a grounded dielectric slab are presented.

Citation:
T. F. Eibert, Y. Weitsch, H. Chen, and M. E. Gruber, "Solving Periodic Eigenproblems by Solving Corresponding Excitation Problems in the Domain of the Eigenvalue," Progress In Electromagnetics Research, Vol. 126, 65-84, 2012.
doi:10.2528/PIER12012405
http://www.jpier.org/PIER/pier.php?paper=12012405

References:
1. Saad, Y., Numerical Methods for Large Eigenvalue Problems, Halstead Press, New York, 1992.

2. Jin, J., "The Finite Element Method in Electromagnetics," John Wiley & Sons, New York, 2002.

3. Lehoucq, R., D. Sorensen, and C. Yang, "ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods," 1997, http://www.caam.rice.edu/soft-ware/ARPACK/.

4. Lubkowski, G., B. Bandlow, R. Schuhmann, and T. Weiland, "Effective modeling of double negative metamaterial macrostructures," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 5, 1136-1146, May 2009.
doi:10.1109/TMTT.2009.2017349

5. Weitsch, Y. and T. F. Eibert, "Periodically loaded waveguide analysis by evanescent mode superposition," European Microw. Conf. (EuMC), Rome, Italy, 2009.

6. Glock, H.-W., K. Rothemund, M. Borecky, and U. van Rienen, "Calculation of RF eigenmodes using S-parameters of resonator parts," Proc. EPAC, 1378-1380, Vienna, Austria, 2000.

7. Kamiya, N. and S. T. Wu, "Generalized eigenvalue formulation of the Helmholtz equation by the Trefftz method," Engineering Computations, Vol. 11, 177-186, 1994.
doi:10.1108/02644409410799218

8. Li, Z.-C., "Error analysis of the Trefftz method for solving Laplace's eigenvalue problems," J. Computational and Applied Mathematics, Vol. 200, 231-254, 2007.
doi:10.1016/j.cam.2005.12.017

9. Karageorghis, A., "The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation," Applied Mathematics Letters, Vol. 14, 837-842, 2001.
doi:10.1016/S0893-9659(01)00053-2

10. Fan, C.-M., D.-L. Young, and C.-L. Chiu, "Method of fundamental solutions with external source for the eigenfrequencies of waveguides ," J. Marine Science and Technology, Vol. 17, No. 3, 164-172, 2009.

11. Reutskiy, S., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701

12. Reutskiy, S. Y., "The method of external excitation for solving generalized Sturm-Liouville problems," J. Computational and Applied Mathematics, Vol. 233, 2374-2386, 2010.
doi:10.1016/j.cam.2009.10.022

13. Eibert, T. F., Y. Weitsch, and H. Chen, "Dispersion analysis of periodic structures by solving corresponding excitation problems," German Microw. Conf. (GeMiC), Darmstadt, Germany, 2011.

14. Chen, H., C. H. Schmidt, T. F. Eibert, and W. Che, "Dispersion and attenuation analysis of substrate integrated waveguides by driven eigenproblem computation," European Conf. Antennas Propag. (EuCAP), Rome, Italy, 2011.

15. Weitsch, Y., H. Chen, and T. F. Eibert, "Dispersion analysis of periodic structures by solving corresponding excitation problems," Frequenz, Vol. 65, No. 7-8, 247-252, 2011.
doi:10.1515/freq.2011.034

16. Eibert, T. F., J. L. Volakis, D. R. Wilton, and D. R. Jackson, "Hybrid FE/BI modeling of 3D doubly periodic structures uilizing triangular prismatic elements and a MPIE formulation accelerated by the Ewald transformation," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 843-850, May 1999.
doi:10.1109/8.774139

17. Eibert, T. F., Y. E. Erdemli, and J. L. Volakis, "Hybrid ¯nite element-fast spectral domain multilayer boundary integral modeling of doubly periodic structures," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2517-2520, Sept. 2003.
doi:10.1109/TAP.2003.816386

18. CST Microwave Studio, 2010, http://www.cst.com.

19. Bondeson, A., T. Rylander, and P. Ingelstrom, Computational Electromagnetics, Springer Science, New York, 2005.

20. Davidson, D. B., "Computational Electromagnetics for RF and Microwave Engineering," Cambridge University Press, Cambridge, UK, 2011.

21. Baum, C. E., E. J. Rothwell, K.-M. Chen, and D. P. Nyquist, "The singularity expansion method and its application to target identification ," Proc. IEEE, Vol. 79, No. 10, 1481-1492, 1991.
doi:10.1109/5.104223

22. Kong, J. A., Electromagnetic Wave Theory, 2nd Ed., Wiley Interscience, New York, USA, 2009.

23. Tamir, T. and A. A. Oliner, "Guided complex waves. Part 1: Fields at an interface," Proc. IEE, Vol. 110, No. 2, 310-324, Feb. 1963.

24. Eshra, I. and A. Kishk, "Analysis of left-handed rectangular waveguides with dielectric-filled corrugations using the asymptotic corrugation boundary ," IEE Proc. Microw. Antennas Propag., Vol. 153, No. 3, 221-225, Jun. 2006.
doi:10.1049/ip-map:20050095

25. Hsu, C., R. Harrington, J. Mautz, and T. Sarkar, "On the location of leaky wave poles for a grounded dielectric slab," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 2, 346-349, Feb. 1991.
doi:10.1109/22.102980

26. Weitsch, Y. and T. F. Eibert, "Composite right-/left-handed interdigital leaky-wave antenna on a substrate integrated waveguide," European Conf. Antennas Propag. (EuCAP), Barcelona, Spain, 2010.

27. Weitsch, Y. and T. F. Eibert, "Eigenvalue computation of open periodically composed waveguides by series expansion," IEEE Antennas Propag. Soc. Int. Symp., Spokane, WA, Jul. 2011.


© Copyright 2014 EMW Publishing. All Rights Reserved