PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 126 > pp. 539-553

A NEW PLASMA ANTENNA OF BEAM-FORMING

By X. P. Wu, J.-M. Shi, Z. S. Chen, and B. Xu

Full Article PDF (1,348 KB)

Abstract:
In this paper, a new plasma antenna of beam-forming is investigated based upon the interaction of plasma elements due to the electromagnetic wave. It presents a study of the multiple scattering from argon plasma cylinders rigorously applying boundary value method, grounded on the properties of electromagnetic wave transmitted in the argon plasma. Approximate expressions for the total radiation of plasma antenna in the far field are derived briefly. Also presented is a study that this new antenna of beam-forming exhibits interesting performance in terms of radiation efficiency, beam-forming and beam-scanning. Valid results are brought forth to demonstrate the capabilities of such antenna of two scales. Comparisons are given in detail as well.

Citation:
X. P. Wu, J.-M. Shi, Z. S. Chen, and B. Xu, "A New Plasma Antenna of Beam-Forming," Progress In Electromagnetics Research, Vol. 126, 539-553, 2012.
doi:10.2528/PIER12021906
http://www.jpier.org/PIER/pier.php?paper=12021906

References:
1. Dwyer, T. J., J. R. Greig, D. P. Murphy, J. M. Perina, and R. E. Pechacek, "On the feasibility of using an atmospheric discharge plasma as an RF antenna," IEEE Trans. Antennas Propag., Vol. 32, 141-146, 1984.
doi:10.1109/TAP.1984.1143275

2. Brog, G. G., J. H. Harris, D. G. Miljak, and N. M. Martin, "Application of plasma columns to radiofrequency antenn," Appl. Phys. Lett., Vol. 74, 3272-3274, 1999.
doi:10.1063/1.123317

3. Brog, G. G., et al., "Plasma as antenna: Theory, experiment and applications," Phys. Plasma., Vol. 7, 2198-2202, 2000.
doi:10.1063/1.874041

4. Rayner, J. P., A. P. Whichello, and A. D. Cheetham, "Physical characteristics of a plasma antenna," Proc. 11th Int. Conf. Plasma Physics, 392-395, Sydney, Australia, Jul. 2002.

5. Fathy, A. E., A. Rosen, H. S. Owen, and F. Mc-Ginty, "Silicon-based reconfigurable antennas - Concepts, analysis, implementation and feasibility," IEEE Trans. Microwave Theory Tech., Vol. 51, 1650-1661, 2003.
doi:10.1109/TMTT.2003.812559

6. Rayner, J. P. and A. P. Whichello, "Physical characteristics of plasma antennas," IEEE Trans. Plasma. Sci., Vol. 32, 269-281, 2004.
doi:10.1109/TPS.2004.826019

7. Alexeff, I. and T. Anderson, "Experimental and theoretical results with plasma antennas," IEEE Trans. Plasma. Sci., Vol. 34, No. 2, Apr. 2006.
doi:10.1109/TPS.2006.872180

8. Alexeff, I., T. Anderson, E. Farshi, N. Karnam, and N. R. Pulasani, "Recent results for plasma antennas," Phys. Plasma., Vol. 15, 057104, 2008.
doi:10.1063/1.2919157

9. Russo, P., G. Cerri, and E. Vecchioni, "Self-consistent model for the characterization of plasma ignition by propagation of an electromagnetic wave to be used for plasma antennas design," IET Microwave Antennas Propag., Vol. 4, 2256-2264, 2010.
doi:10.1049/iet-map.2009.0290

10. Kumar, R. and D. Bora, "A reconfigurable plasma antenna," J. Appl. Phys., Vol. 107, 053303, 2010.
doi:10.1063/1.3318495

11. Mathew, J., R. A. Meger, R. F. Fernsler, D. P. Murphy, R. E. Pechacek, and W. M. Manheimer, "Electronically steerable plasma mirror based radar antenna," 10th International Conference on Antenna and Propagation, Vol. 436, 1469-1473, Apr. 14-17, 1997.

12. Cheng, Z. F., "Design and research on plasma microwave reflector,", Center for Space Science and Applied Research, China, Beijing, 2010.

13. Haleakala Research and Development, Inc., Commercial Smart Plasma Antenna Prototype, Brookfield, Massachusetts, USA, 2008.

14. Kamarudin, M. R. B., P. S. Hall, F. Colombel, and M. Himdi, "Electronically switched beam disk-loaded monopole array antenna," Progress In Electromagnetics Research, Vol. 101, 339-347, 2010.
doi:10.2528/PIER10010808

15. Liu, J., W.-Y. Yin, and S. He, "A new defected ground structure and its application for miniaturized switchable antenna," Progress In Electromagnetics Research, Vol. 107, 115-128, 2010.
doi:10.2528/PIER10050904

16. Sun, B.-H., S.-G. Zhou, Y.-F. Wei, and Q.-Z. Liu, "Modified two-element Yagi-Uda antenna with tunable beams," Progress In Electromagnetics Research, Vol. 100, 175-187, 2010.
doi:10.2528/PIER09111501

17. Wounchoum, P., D. Worasawate, C. Phongcharoenpanich, and M. Krairiksh, "A switched-beam antenna using circumferential-slots on a concentric sectoral cylindrical cavity excited by coupling slots," Progress In Electromagnetics Research, Vol. 120, 127-141, 2011.

18. Hon, T., M.-Z. Song, and Y. Liu, "RF directional modulation technique using a switched antenna array for communication and direction-finding applications," Progress In Electromagnetics Research, Vol. 120, 195-213, 2011.

19. Peng, H.-L., W.-Y. Yin, J.-F. Mao, D. Huo, X. Hang, and L. Zhou, "A compact dual-polarized broadband antenna with hybrid beam-forming capabilities," Progress In Electromagnetics Research, Vol. 118, 253-271, 2011.
doi:10.2528/PIER11042905

20. Eom, S. Y., Y.-B. Jung, S. A. Ganin, and A. V. Shishlov, "A cylindrical shaped-reflector antenna with a linear feed array for shaping complex beam patterns," Progress In Electromagnetics Research, Vol. 119, 477-495, 2011.
doi:10.2528/PIER11062912

21. Hong, T., M.-Z. Song, and Y. Liu, "RF directional modulation technique using a switched antenna array for physical layer secure communication applications ," Progress In Electromagnetics Research, Vol. 116, 363-379, 2011.

22. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.

23. Zaharis, Z. D., C. Skeberis, and T. D. Xenos, "Improved antenna array adaptive beamforming with low side lobe level using a novel adaptive invasive weed optimization method," Progress In Electromagnetics Research, Vol. 124, 137-150, 2012.
doi:10.2528/PIER11120202

24. Chen, Y., S. Yang, and Z.-P. Nie, "A novel wideband antenna array with tightly coupled octagonal ring elements," Progress In Electromagnetics Research, Vol. 124, 55-70, 2012.
doi:10.2528/PIER11121312

25. Li, W.-X., Y.-P. Li, and W.-H. Yu, "On adaptive beamforming for coherent interference suppression via virtual antenna array," Progress In Electromagnetics Research, Vol. 125, 165-184, 2012.
doi:10.2528/PIER12010802

26. Jandieri, G. V., A. Ishimaru, V. Jandieri, and N. N. Zhukova, "Depolarization of metric radio signals and the spatial spectrum of scattered radiation by magnetized turbulent plasma slab," Progress In Electromagnetics Research, Vol. 112, 63-75, 2011.

27. Wu, X. P., J. M. Shi, S. M. Du, and Y. F. Gao, "Analysis of bi-station scattering characteristics of conductor column covered by time-varying plasma," Journal of Vacuum Science and Technology, Vol. 12, 133-141, 2012.

28. Valagiannopoulos, C. A., "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011.

29. Xiao, K., F. Zhao, S.-L. Chai, J. J. Mao, and J. L.-W. Li, "Scattering analysis of periodic arrays using combined CBF/P-FFT method," Progress In Electromagnetics Research, Vol. 115, 131-146, 2011.

30. Li, P. and L. Jiang, "The far field transformation for the antenna modeling based on spherical electric field measurements," Progress In Electromagnetics Research, Vol. 123, 243-261, 2012.
doi:10.2528/PIER11102301

31. Gomez-Revuelto, I., L. E. Garcia-Castillo, and M. Salazar-Palma, "Goal-oriented self-adaptive HP-strategies for finite element analysis of electromagnetic scattering and radiation problems," Progress In Electromagnetics Research, Vol. 125, 459-482, 2012.
doi:10.2528/PIER11121606

32. Pan, X.-M., L. Cai, and X.-Q. Sheng, "An efficient high order multilevel fast multipole algorithm for electromagnetic scattering analysis," Progress In Electromagnetics Research, Vol. 126, 85-100, 2012.
doi:10.2528/PIER12020203

33. Zarifi, D., A. Abdolali, M. Soleimani, and V. Nayyeri, "Inhomogeneous planar layered chiral media: Analysis of wave propagation and scattering using Taylor's series expansion," Progress In Electromagnetics Research, Vol. 125, 119-135, 2012.
doi:10.2528/PIER11122804

34. Elsherbeni, A. Z. and A. A. Kishk, "Modeling of cylindrical objects by circular dielectric and conducting cylinders," IEEE Trans. Antennas Propag., Vol. 40, 96-99, 1992.
doi:10.1109/8.123363

35. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

36. Baizer, Y. P., Gas Discharge Physics, Springer-Verlage, Heidel-berg, Berlin, 1991.

37. Zhou, T. M., X. Zhou, and W. X. Cai, Principle and Design of Light Sources, Fudan University Press, Shanghai, China, 2008.


© Copyright 2014 EMW Publishing. All Rights Reserved