PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 127 > pp. 351-370

THE "SLOPE" EFFECT OF COHERENT TRANSPONDER IN INSAR DEM

By Q. Liu, S. Xing, X. Wang, J. Dong, D. Dai, and Y. Li

Full Article PDF (1,046 KB)

Abstract:
Although a Coherent Transponder (CT) is widely utilized in the field of Synthetic Aperture Radar (SAR), its Digital Elevation Model (DEM) has yet not been well studied for Interferometry SAR (InSAR). Based on the fact that the interferometry phase is a constant for CT with single transmit antenna, this paper mainly focuses on InSAR DEM induced by CT. The decorrelation effect in the intersection region of CT and nature terrain is researched in detail to support the analysis of CT's phase-unwrapping. The most important property, which makes DEM of CT being unique, is found to be the "slope" effect. The incline angel of "main slope" of DEM is verified to be determined only by the depression angle of InSAR system, whereas the incline angles of the "subordinate slopes" are affected by all the geometric parameters of InSAR baseline. Finally, all the incline angels are independent of CT' s waveform modulations, since the modulations have no contribution to the interferometry phase.

Citation:
Q. Liu, S. Xing, X. Wang, J. Dong, D. Dai, and Y. Li, "The "slope" effect of coherent transponder in insar dem," Progress In Electromagnetics Research, Vol. 127, 351-370, 2012.
doi:10.2528/PIER12022111
http://www.jpier.org/pier/pier.php?paper=12022111

References:
1. Zhao, Y. W., M. Zhang, and H. Chen, "An effcient ocean SAR raw signal simulation by employing fast fourier transform," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2273-2284, 2010.
doi:10.1163/156939310793699064

2. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

3. Park, S.-H., M.-G. Joo, and K.-T. Kim, "Construction of ISAR training database for automatic target recognition," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11/12, 1493-1503, 2011.
doi:10.1163/156939311797164909

4. Xu, W. and Y. K. Deng, "Investigation on electronic azimuth beam steering in the spaceborne SAR imaging modes," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14/15, 2076-2088, 2011.
doi:10.1163/156939311798071983

5. Jin, Y.-Q., "Polarimetric scattering modeling and information retrieval of SAR remote sensing-A review of fdu work," Progress In Electromagnetics Research, No. 104, 333-384, 2010.
doi:10.2528/PIER10020101

6. Teng, H. T., H.-T. Ewe, and S. L. Tan, "Multifractal dimension and its geometrical terrain properties for classification of multiband multi-polarized SAR image," Progress In Electromagnetics Research, No. 104, 221-237, 2010.
doi:10.2528/PIER10022001

7. Dai, C. and X.-L. Zhang, "Omega-K algorithm for bistatic SAR with arbitrary geometry configuration," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11/12, 1564-1576, 2011.
doi:10.1163/156939311797164972

8. Sun, J., S. Mao, G. Wang, and W. Hong, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 338, 2010.

9. Lim, S.-H., C. G. Hwang, S.-Y. Kim, and N.-H. Myung, "Shifting MIMO SAR system for high-resolution wide-swath imaging," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8/9, 1168-1178, 2011.
doi:10.1163/156939311795762114

10. Mohammadpoor, M., R. S. A. Raja Abdullah, A. Ismail, and A. F. Abas, "A circular synthetic aperture radar for on-the-ground object detection," Progress In Electromagnetics Research, Vol. 122, 269-292, 2012.
doi:10.2528/PIER11082201

11. Woo, J.-C., B.-G. Lim, and Y.-S. Kim, "Modification of the recursive sidelobe minimization technique for the range-doppler algorithm of SAR imaging," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1783-1794, 2011.
doi:10.1163/156939311797453926

12. Han, S.-K., H.-T. Kim, S.-H. Park, and K.-T. Kim, "Effcient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research, No. 108, 131-140, 2010.
doi:10.2528/PIER10071601

13. Koo, V. C., Y. K. Chan, V. Gobi, M. Y. Chua, C. H. Lim, C.-S. Lim, C. C. Thum, T. S. Lim, Z. Bin Ahmad, K. A. Mahmood,M. H. Bin Shahid, C. Y.Ang, W. Q. Tan, P. N. Tan, K. S. Yee,W. G. Cheaw, H. S. Boey, A. L. Choo, and B. C. Sew, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research, Vol. 122, 245-268, 2012.
doi:10.2528/PIER11092604

14. Weiss, M. and P. Berens, Motion compensation of wideband synthetic aperture radar with a new transponder technique, IEEE International Geoscience and Remote Sensing Symposium, Vol. 6, 3649-3651, 2002.

15. Kemp, W. M. and N. M. Martin, "A synthetic aperture radar calibration transponder at C-band," Record of the IEEE 1990 International Radar Conference, 81-85, 1990.
doi:10.1109/RADAR.1990.201141

16. Yiding, W., "The maximum phase error of a reflected signal in an active coded transponder," IEEE Geoscience and Remote Sensing Letters, Vol. 3, No. 1, 150-153, 2006.
doi:10.1109/LGRS.2005.860980

17. Mohr, J. J. and S. N. Madsen, "Geometric calibration of ERS satellite SAR images," IEEE Trans. on Geoscience and Remote Sensing, Vol. 39, No. 4, 842-850, 2001.
doi:10.1109/36.917909

18. Liu, Q. F., S. Q. Xing, W. S. Wang, and J. Dong, "A stripmap SAR coherent jammer structure utilizing periodic modulation technology," Progress In Electromagnetics Research B, Vol. 28, 111-128, 2011.

19. Krieger, G., et al., "Interferometric synthetic aperture radar (SAR) missions employing formation flying," Proceeding of IEEE, Vol. 98, No. 5, 816-843, 2010.
doi:10.1109/JPROC.2009.2038948

20. Schneider, R. Z., K. P. Papathanassiou, I. Hajnsek, and A. Moreira, "Polarimetric and interferometric characterization of coherent scatterers in urban areas," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 4, 971-984, 2006.
doi:10.1109/TGRS.2005.860950

21. Condley, C. J., "Some system considerations for electronic countermeasures to synthetic aperture radar," Lee Colloquium on Published, 811-817, 1991.

22. Dumper, K., et al., "Spaceborne synthetic aperture radar and noise jamming," Proceedings of IEE Radar, 411-414, 1997.

23. Wu, X. F., D. H. Dai, and X. S. Wang, "Study on SAR jamming measures," IET International Conference on Radar Systems, 176-179, Edinburgh, England,2007.

24. Wu, X. F., D. H. Dai, X. S. Wang, and H. Z. Lu, "Evaluation of SAR jamming performance," International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 1476-1479, 2007.
doi:10.1109/MAPE.2007.4393559

25. Dai, D. H., X. F. Wu, X. S. Wang, and S. P. Xiao, "SAR activedecoys jamming based on DRFM," IET International Conference on Radar Systems, 1-4, 2007.

26. Liu, Q., S. Xing, X. Wang, J. Dong, D. Dai, and Y. Li, "The interferometry phase of InSAR coherent jamming with arbitrary waveform modulation," Progress In Electromagnetics Research, Vol. 124, 101-118, 2012.
doi:10.2528/PIER11111601

27. Mrstik, V., "Agile-beam synthetic aperture radar opportunities," IEEE Trans. on AES, Vol. 34, No. 2, 500-507, 1998.

28. Joachim, H. G., et al., "Multi channel SAR/MTI system development at FGAN: From AER to PAMIR," 2002 IEEE International Geoscience and Remote Sensing Symposium, Vol. 3, 1697-1701, 2002.

29. Andrew, S. P., "An adaptive beamforming technique for countering synthetic aperture radar (SAR) jamming threats," 2007 IEEE Radar Conf., 630-634, 2007.

30. Dennis, C. G. and D. P. Mark, Two-dimensional Phase Unwrapping Theory, Algorithms, and Software, John Wiley & Sons. Inc.,1998.

31. Jakowatz, C. V., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson, Spotlight-mode Synthetic Aperture Radar: A Signal Processing Approach, Kluwer Academic Publishers, Boston,1996.

32. Roth, M. W., "Phase unwrapping for interferometric SAR by the least-error path,", Johns Hopkins University Applied Physics Laboratory Technical Report, Laurel, Maryland,1995.


© Copyright 2014 EMW Publishing. All Rights Reserved