PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 127 > pp. 211-257

AN EFFICIENT METHOD FOR COMPUTING HIGHLY OSCILLATORY PHYSICAL OPTICS INTEGRAL

By Y. Wu, L. J. Jiang, and W. C. Chew

Full Article PDF (3,839 KB)

Abstract:
In this work, we use the numerical steepest descent path (numerical SDP) method in complex analysis theory to calculate the highly oscillatory physical optics (PO) integral with quadratic phase and amplitude variations on the triangular patch. The Stokes' phenomenon will occur due to various asymptotic behaviors on different domains. The stationary phase point contributions are carefully studied by the numerical SDP method and complex analysis using contour deformation. Its result agrees very well with the leading terms of the traditional asymptotic expansion. Furthermore, the resonance points and vertex points contributions from the PO integral are also extracted. Compared with traditional approximate asymptotic expansion approach, our method has significantly improved the PO integral accuracy by one to two digits (10-1 to 10-2) for evaluating the PO integral. Moreover, the computation effort for the highly oscillatory integral is frequency independent. Numerical results for PO integral on the triangular patch are given to verify the proposed numerical SDP theory.

Citation:
Y. Wu, L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308
http://www.jpier.org/pier/pier.php?paper=12022308

References:
1. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

2. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, Norwood, 1993.

3. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, John Wiley and Sons, Inc., New York, 2007.
doi:10.1002/0470109017

4. Macdonald , H. M., "The effect produced by an obstacle on a train of electric waves," Phil. Trans. Royal Soc. London, Series A, Math. Phys. Sci., Vol. 212, 299-337, 1913.
doi:10.1098/rsta.1913.0010

5. Ludwig, A. C., "Computation of radiation patterns involving numerical double integration," IEEE Trans. Antennas Propag., Vol. 16, No. 6, 767-769, Nov. 1968.
doi:10.1109/TAP.1968.1139296

6. Gordon, W. B., "Far-field approximations to the Kirchhoff-Helmholtz representation of scattered fields," IEEE Trans. Antennas Propag., Vol. 23, No. 4, 590-592, Jul. 1975.
doi:10.1109/TAP.1975.1141105

7. Gordon, W. B., "High-frequency approximations to the physical optics scattering integral ," IEEE Trans. Antennas Propag., Vol. 42, No. 3, 427-432, Mar. 1994.
doi:10.1109/8.280733

8. Bolukbas, D. and A. A. Ergin, "A radon transform interpretation of the physical optics integral," Microw. Opt. Tech. Lett., Vol. 44, No. 3, 284-288, Feb. 2005.
doi:10.1002/mop.20612

9. Serim, H. A. and A. A. Ergin, "Computation of the physical optics integral on NURBS surfaces using a radon transform interpretation," IEEE Antennas Wireless Propag. Lett., Vol. 7, 70-73, 2008.
doi:10.1109/LAWP.2008.915811

10. Ulku, H. A. and A. A. Ergin, "Radon transform interpretation of the physical optics integral and application to near and far field acoustic scattering problems," IEEE Antennas and Propagation Society International Symposium, APSURSI, 2010.

11. Infante, L. and M. Stefano, "Near-field line-integral representation of the Kirchhoff-type aperture radiation for parabolic reflector," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 273-276, 2003.
doi:10.1109/LAWP.2003.820685

12. Burkholder, R. J. and T. H. Lee, "Adaptive sampling for fast physical optics numerical integration," IEEE Trans. Antennas Propag., Vol. 53, No. 5, 1843-1845, May 2005.
doi:10.1109/TAP.2005.846813

13. Conde, O. M., J. Perez, and M. F. Catedra, "Stationary phase method application for the analysis of radiation of complex 3-D conducting structures," IEEE Trans. Antennas Propag., Vol. 49, No. 5, 724-731, May 2001.
doi:10.1109/8.929626

14. Catedra, M. F., C. Delgado, S. Luceri, O. G. Blanco, and F. S. Adana, "Physical optics analysis of multiple interactions in large scatters using current modes," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 985-994, Mar. 2006.
doi:10.1109/TAP.2006.869893

15. Delgado, C., J. M. Gomez, and M. F. Catedra, "Analytical field calculation involving current modes and quadratic phase expressions," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 233-240, Jan. 2007.
doi:10.1109/TAP.2006.888470

16. Catedra, M. F., C. Delgado, and I. G. Diego, "New physical optics approach for an efficient treatment of multiple bounces in curved bodies defined by an impedance boundary condition," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 728-736, Mar. 2008.
doi:10.1109/TAP.2008.916938

17. Vico, F., M. Ferrando, and A. Valero, "A new fast physical optics for smooth surfaces by means of a numerical theory of diffraction ," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 773-789, Mar. 2010.
doi:10.1109/TAP.2009.2039308

18. Carluccio, G., M. Albani, and P. H. Pathak, "Uniform asymptotic evaluation of surface integrals with polygonal integration domains in terms of UTD transition functions ," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1155-1163, Apr. 2010.
doi:10.1109/TAP.2010.2041171

19. Albani, M., G. Carluccio, and P. H. Pathak, "Uniform ray description for the PO scattering by vertices in curved surface with curvilinear edges and relatively general boundary conditions," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1587-1596, May 2011.
doi:10.1109/TAP.2011.2123062

20. Harrington, R., Field Computation by Moment Method, Macmillan, New York, 1968.

21. Borovikov, V. A., Uniform Stationary Phase Method, Institution of Electrical Engineers, London, 1994.

22. James, G. L., "Geometrical Theory of Diffraction for Electromagnetic Waves," Peregrinus, Stevenage, 1980.

23. Langdon, S. and S. N. Chandler-Wilde, "A wavenumber independent boundary element method for an acoustic scattering problem," SIAM J. Numer. Anal., Vol. 43, No. 6, 2450-2477, 2006.
doi:10.1137/S0036142903431936

24. Bruno, O. P., C. A. Geuzaine, J. A. Monro, Jr., and F. Reitich, "Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: The convex case," Phil. Trans. Royal Soc. London, Series A, Vol. 362, 629-645, 2004.
doi:10.1098/rsta.2003.1338

25. Geuzaine, C., O. Bruno, and F. Reitich, "On the O(1) solution of multiple-scattering problems," IEEE Trans. Magn., Vol. 41, No. 5, 1498-1491, May 2005.
doi:10.1109/TMAG.2005.844567

26. Bruno, O. P. and C. A. Geuzaine, "An O(1) integration scheme for three-dimensional surface scattering problems," J. Comp. Appl. Math., Vol. 204, No. 2, 463-476, 2007.
doi:10.1016/j.cam.2006.02.050

27. Engquist, B., E. Fatemi, and S. Osher, "Numerical solution of the high frequency asymptotic expansion for the scalar wave equation," J. Comput. Phys., Vol. 120, No. 1, 145-155, Aug. 1995.
doi:10.1006/jcph.1995.1154

28. Engquist, B. and O. Runborg, "Multi-Phase computations in geometrical optics," J. Comp. Appl. Math., Vol. 74, No. 1-2, 175-192, 1996.
doi:10.1016/0377-0427(96)00023-4

29. Engquist, B. and O. Runborg, "Computational high frequency wave propagation," Acta Numerica, Vol. 12, 181-266, 2003.
doi:10.1017/S0962492902000119

30. Iserles, A. and S. P. NΦsett, "Quadrature methods for multivariate highly oscillatory integrals using derivatives," Math. Comp., Vol. 75, No. 255, 1233-1258, 2006.
doi:10.1090/S0025-5718-06-01854-0

31. Iserles, A. and S. P. NΦsett, "On the computation of highly oscillatory multivariate integrals with critical points," BIT, Vol. 46, No. 3, 549-566, 2006.
doi:10.1007/s10543-006-0071-2

32. Iserles, A. and S. P. NΦsett, "From high oscillation to rapid approximation III: Multivariate expansions," IMA J. Num. Anal., Vol. 29, No. 4, 882-916, 2009.
doi:10.1093/imanum/drn020

33. Iserles, A. and D. Levin, "Asymptotic expansion and quadrature of composite highly oscillatory integrals," Math. Comp., Vol. 80, No. 273, 279-296, 2011.
doi:10.1090/S0025-5718-2010-02386-5

34. Huybrechs, D. and S. Vandewalle, "The construction of cubature rules for multivariate highly oscillatory integrals," Math. Comp., Vol. 76, No. 260, 1955-1980, 2007.
doi:10.1090/S0025-5718-07-01937-0

35. Huybrechs, D. and S. Vandewalle, "A sparse discretisation for integral equation formulations of high frequency scattering problems," SIAM J. Sci. Comput., Vol. 29, No. 6, 2305-2328, 2007.
doi:10.1137/060651525

36. Asheim, A. and D. Huybrechs, "Asymptotic analysis of numerical steepest descent with path approximations," Found. Comput. Math., Vol. 10, No. 6, 647-671, 2010.
doi:10.1007/s10208-010-9068-y

37. Asheim, A., "Numerical methods for highly oscillatory problems,", Ph.D. Dissertation,-Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010.

38. Wong, R., Asymptotic Approximations of Integrals, New York, 2001.

39. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proceedings of the IEEE, Vol. 62, No. 11, 1448-1461, Nov. 1974.
doi:10.1109/PROC.1974.9651

40. Lee, S. W. and G. A. Deschamps, "A uniform asymptotic theory of electromagnetic diffraction by a curved wedge," IEEE Trans. Antennas Propag., Vol. 24, No. 1, 25-34, Jan. 1976.
doi:10.1109/TAP.1976.1141283

41. Ikuno, H. and M. Nishimoto, "Calculation of transfer functions of three-dimensional indented objects by the physical optics approximation combined with the method of stationary phase," IEEE Trans. Antennas Propag., Vol. 39, No. 5, 585-590, May 1991.
doi:10.1109/8.81484

42. Jones, D. S. and M. Kline, "Asymptotic expansion of multiple integrals and the method of stationary phase," J. Math. Phys., Vol. 37, 1-28, 1958.

43. Chako, N., "Asymptotic expansions of double and multiple integral," J. Inst. Math. Applic., Vol. 1, No. 4, 372-422, 1965.
doi:10.1093/imamat/1.4.372

44. Davis, C. P. and W. C. Chew, "Frequency-independent scattering fom a flat strip with TEz-polarized fields," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1008-1016, Apr. 2008.
doi:10.1109/TAP.2008.919196

45. Sha, W. E. I. and W. C. Chew, "High frequency scattering by an impenetrable sphere," Progress In Electromagnetics Research, Vol. 97, 291-325, 2009.
doi:10.2528/PIER09100102

46. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Norwood, MA, Dover, 1972.

47. Josef, S. and B. Roland, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.


© Copyright 2014 EMW Publishing. All Rights Reserved